↓ Skip to main content

Inflorescence development in tomato: gene functions within a zigzag model

Overview of attention for article published in Frontiers in Plant Science, March 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (66th percentile)

Mentioned by

twitter
2 X users

Readers on

mendeley
126 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Inflorescence development in tomato: gene functions within a zigzag model
Published in
Frontiers in Plant Science, March 2014
DOI 10.3389/fpls.2014.00121
Pubmed ID
Authors

Claire Périlleux, Guillaume Lobet, Pierre Tocquin

Abstract

Tomato is a major crop plant and several mutants have been selected for breeding but also for isolating important genes that regulate flowering and sympodial growth. Besides, current research in developmental biology aims at revealing mechanisms that account for diversity in inflorescence architectures. We therefore found timely to review the current knowledge of the genetic control of flowering in tomato and to integrate the emerging network into modeling attempts. We developed a kinetic model of the tomato inflorescence development where each meristem was represented by its "vegetativeness" (V), reflecting its maturation state toward flower initiation. The model followed simple rules: maturation proceeded continuously at the same rate in every meristem (dV); floral transition and floral commitment occurred at threshold levels of V; lateral meristems were initiated with a gain of V (ΔV) relative to the V level of the meristem from which they derived. This last rule created a link between successive meristems and gave to the model its zigzag shape. We next exploited the model to explore the diversity of morphotypes that could be generated by varying dV and ΔV and matched them with existing mutant phenotypes. This approach, focused on the development of the primary inflorescence, allowed us to elaborate on the genetic regulation of the kinetic model of inflorescence development. We propose that the lateral inflorescence meristem fate in tomato is more similar to an immature flower meristem than to the inflorescence meristem of Arabidopsis. In the last part of our paper, we extend our thought to spatial regulators that should be integrated in a next step for unraveling the relationships between the different meristems that participate to sympodial growth.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 126 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Japan 2 2%
Colombia 1 <1%
Belgium 1 <1%
Brazil 1 <1%
Spain 1 <1%
United States 1 <1%
Unknown 119 94%

Demographic breakdown

Readers by professional status Count As %
Researcher 28 22%
Student > Ph. D. Student 26 21%
Student > Master 16 13%
Student > Doctoral Student 9 7%
Other 6 5%
Other 17 13%
Unknown 24 19%
Readers by discipline Count As %
Agricultural and Biological Sciences 73 58%
Biochemistry, Genetics and Molecular Biology 17 13%
Environmental Science 3 2%
Unspecified 2 2%
Arts and Humanities 1 <1%
Other 4 3%
Unknown 26 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 31 March 2014.
All research outputs
#15,205,711
of 22,685,926 outputs
Outputs from Frontiers in Plant Science
#10,446
of 19,875 outputs
Outputs of similar age
#132,382
of 226,066 outputs
Outputs of similar age from Frontiers in Plant Science
#39
of 113 outputs
Altmetric has tracked 22,685,926 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 19,875 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 46th percentile – i.e., 46% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 226,066 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 113 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.