↓ Skip to main content

Effects of elevated CO2 on biomass and fungi associated with two ecotypes of ragweed (Ambrosia artemisiifolia L.)

Overview of attention for article published in Frontiers in Plant Science, September 2014
Altmetric Badge

Mentioned by

twitter
2 X users

Readers on

mendeley
26 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Effects of elevated CO2 on biomass and fungi associated with two ecotypes of ragweed (Ambrosia artemisiifolia L.)
Published in
Frontiers in Plant Science, September 2014
DOI 10.3389/fpls.2014.00500
Pubmed ID
Authors

G. Brett Runion, Stephen A. Prior, Andrew J. Price, J. Scott McElroy, H. Allen Torbert

Abstract

Herbicide resistant weed populations have developed due to the repeated application of herbicides. Elevated concentrations of atmospheric CO2 can have positive effects on weed growth, but how rising CO2 might affect herbicide resistant weeds is not known. Ragweed (Ambrosia artemisiifolia L.) ecotypes known to be resistant or susceptible to glyphosate herbicide were exposed to either ambient or elevated (ambient +200 μ mol mol(-1)) concentrations of CO2 in open top chambers. Plants were harvested following 8 weeks of CO2 exposure; at this time, they had begun to exhibit disease symptoms including spots on leaves and stems. Elevated CO2 significantly increased top, root, and total plant biomass. Also, glyphosate resistant plants had significantly greater top, root, and total biomass than plants susceptible to the herbicide. There were no significant CO2 by ecotype interactions. Fungi from 13 genera were associated with ragweed, several of which can be either pathogens (i.e., Alternaria, Fusarium, Rhizoctonia), aiding the decline in health of the ragweed plants, or saprophytes existing on dead plant tissues. The common foliar disease powdery mildew was significantly higher on susceptible compared with resistant ragweed. Susceptible plants also showed an increased frequency of Rhizoctonia on leaves and Alternaria on stems; however, Fusarium occurred more frequently on resistant ragweed leaves. Fungi were not affected by CO2 concentration or its interaction with ecotype. This study reports the first information on the effects of elevated CO2 on growth of herbicide resistant weeds. This is also the first study examining the impact of herbicide resistance and elevated CO2 on fungi associated with weeds. What effects herbicide resistance might have on plant diseases and how rising atmospheric CO2 might impact these effects needs to be addressed, not only with important weeds but also with crops.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 26 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 26 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 19%
Student > Doctoral Student 4 15%
Professor > Associate Professor 3 12%
Student > Ph. D. Student 3 12%
Other 2 8%
Other 4 15%
Unknown 5 19%
Readers by discipline Count As %
Agricultural and Biological Sciences 15 58%
Environmental Science 2 8%
Biochemistry, Genetics and Molecular Biology 1 4%
Psychology 1 4%
Social Sciences 1 4%
Other 2 8%
Unknown 4 15%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 September 2014.
All research outputs
#18,379,018
of 22,764,165 outputs
Outputs from Frontiers in Plant Science
#13,655
of 20,063 outputs
Outputs of similar age
#180,038
of 252,277 outputs
Outputs of similar age from Frontiers in Plant Science
#142
of 185 outputs
Altmetric has tracked 22,764,165 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,063 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 20th percentile – i.e., 20% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 252,277 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 185 others from the same source and published within six weeks on either side of this one. This one is in the 17th percentile – i.e., 17% of its contemporaries scored the same or lower than it.