↓ Skip to main content

A dehydrin-dehydrin interaction: the case of SK3 from Opuntia streptacantha

Overview of attention for article published in Frontiers in Plant Science, October 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Readers on

mendeley
40 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A dehydrin-dehydrin interaction: the case of SK3 from Opuntia streptacantha
Published in
Frontiers in Plant Science, October 2014
DOI 10.3389/fpls.2014.00520
Pubmed ID
Authors

Itzell E. Hernández-Sánchez, David M. Martynowicz, Aida A. Rodríguez-Hernández, Maria B. Pérez-Morales, Steffen P. Graether, Juan F. Jiménez-Bremont

Abstract

Dehydrins belongs to a large group of highly hydrophilic proteins known as Late Embryogenesis Abundant (LEA) proteins. It is well known that dehydrins are intrinsically disordered plant proteins that accumulate during the late stages of embryogenesis and in response to abiotic stresses; however, the molecular mechanisms by which their functions are carried out are still unclear. We have previously reported that transgenic Arabidopsis plants overexpressing an Opuntia streptacantha SK3 dehydrin (OpsDHN1) show enhanced tolerance to freezing stress. Herein, we show using a split-ubiquitin yeast two-hybrid system that OpsDHN1 dimerizes. We found that the deletion of regions containing K-segments and the histidine-rich region in the OpsDHN1 protein affects dimer formation. Not surprisingly, in silico protein sequence analysis suggests that OpsDHN1 is an intrinsically disordered protein, an observation that was confirmed by circular dichroism and gel filtration of the recombinantly expressed protein. The addition of zinc triggered the association of recombinantly expressed OpsDHN1 protein, likely through its histidine-rich motif. These data brings new insights about the molecular mechanism of the OpsDHN1 SK3-dehydrin.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 40 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 3%
Canada 1 3%
Unknown 38 95%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 18%
Student > Master 6 15%
Researcher 6 15%
Student > Doctoral Student 4 10%
Professor 2 5%
Other 5 13%
Unknown 10 25%
Readers by discipline Count As %
Agricultural and Biological Sciences 21 53%
Biochemistry, Genetics and Molecular Biology 8 20%
Unknown 11 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 October 2014.
All research outputs
#17,285,036
of 25,371,288 outputs
Outputs from Frontiers in Plant Science
#12,888
of 24,593 outputs
Outputs of similar age
#161,134
of 268,350 outputs
Outputs of similar age from Frontiers in Plant Science
#116
of 219 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,593 research outputs from this source. They receive a mean Attention Score of 3.9. This one is in the 41st percentile – i.e., 41% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 268,350 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 219 others from the same source and published within six weeks on either side of this one. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.