↓ Skip to main content

Assessing the transcriptional regulation of L-cysteine desulfhydrase 1 in Arabidopsis thaliana

Overview of attention for article published in Frontiers in Plant Science, December 2014
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
24 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Assessing the transcriptional regulation of L-cysteine desulfhydrase 1 in Arabidopsis thaliana
Published in
Frontiers in Plant Science, December 2014
DOI 10.3389/fpls.2014.00683
Pubmed ID
Authors

Ana M. Laureano-Marín, Irene García, Luis C. Romero, Cecilia Gotor

Abstract

Hydrogen sulfide is an important signaling molecule that functions as a physiological gasotransmitter of comparable importance to NO and CO in mammalian systems. In plants, numerous studies have shown that sulfide increases tolerance/resistance to stress conditions and regulates essential processes. The endogenous production of hydrogen sulfide in the cytosol of Arabidopsis thaliana occurs by the enzymatic desulfuration of L-cysteine, which is catalyzed by the L-cysteine desulfhydrase enzyme DES1. To define the functional role of DES1 and the role that the sulfide molecule may play in the regulation of physiological processes in plants, we studied the localization of the expression of this gene at the tissue level. Transcriptional data reveal that DES1 is expressed at all developmental stages and is more abundant at the seedling stage and in mature plants. At the tissue level, we analyzed the expression of a GFP reporter gene fused to promoter of DES1. The GFP fluorescent signal was detected in the cytosol of both epidermal and mesophyll cells, including the guard cells. GFP fluorescence was highly abundant around the hydathode pores and inside the trichomes. In mature plants, fluorescence was detected in floral tissues; a strong GFP signal was detected in sepals, petals, and pistils. When siliques were examined, the highest GFP fluorescence was observed at the bases of the siliques and the seeds. The location of GFP expression, together with the identification of regulatory elements within the DES1 promoter, suggests that DES1 is hormonally regulated. An increase in DES1 expression in response to ABA was recently demonstrated; in the present work, we observe that in vitro auxin treatment significantly repressed the expression of DES1.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 24 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 21%
Student > Ph. D. Student 4 17%
Student > Master 3 13%
Other 2 8%
Student > Postgraduate 2 8%
Other 5 21%
Unknown 3 13%
Readers by discipline Count As %
Agricultural and Biological Sciences 15 63%
Biochemistry, Genetics and Molecular Biology 5 21%
Neuroscience 1 4%
Unknown 3 13%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 December 2014.
All research outputs
#22,759,802
of 25,374,917 outputs
Outputs from Frontiers in Plant Science
#19,714
of 24,598 outputs
Outputs of similar age
#314,345
of 368,057 outputs
Outputs of similar age from Frontiers in Plant Science
#172
of 218 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,598 research outputs from this source. They receive a mean Attention Score of 3.9. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 368,057 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 218 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.