↓ Skip to main content

Involvement of Phosphatidylinositol 3-kinase in the regulation of proline catabolism in Arabidopsis thaliana

Overview of attention for article published in Frontiers in Plant Science, January 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
60 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Involvement of Phosphatidylinositol 3-kinase in the regulation of proline catabolism in Arabidopsis thaliana
Published in
Frontiers in Plant Science, January 2015
DOI 10.3389/fpls.2014.00772
Pubmed ID
Authors

Anne-Sophie Leprince, Nelly Magalhaes, Delphine De Vos, Marianne Bordenave, Emilie Crilat, Gilles Clément, Christian Meyer, Teun Munnik, Arnould Savouré

Abstract

Plant adaptation to abiotic stresses such as drought and salinity involves complex regulatory processes. Deciphering the signaling components that are involved in stress signal transduction and cellular responses is of importance to understand how plants cope with salt stress. Accumulation of osmolytes such as proline is considered to participate in the osmotic adjustment of plant cells to salinity. Proline accumulation results from a tight regulation between its biosynthesis and catabolism. Lipid signal components such as phospholipases C and D have previously been shown to be involved in the regulation of proline metabolism in Arabidopsis thaliana. In this study, we demonstrate that proline metabolism is also regulated by class-III Phosphatidylinositol 3-kinase (PI3K), VPS34, which catalyses the formation of phosphatidylinositol 3-phosphate (PI3P) from phosphatidylinositol. Using pharmacological and biochemical approaches, we show that the PI3K inhibitor, LY294002, affects PI3P levels in vivo and that it triggers a decrease in proline accumulation in response to salt treatment of A. thaliana seedlings. The lower proline accumulation is correlated with a lower transcript level of Pyrroline-5-carboxylate synthetase 1 (P5CS1) biosynthetic enzyme and higher transcript and protein levels of Proline dehydrogenase 1 (ProDH1), a key-enzyme in proline catabolism. We also found that the ProDH1 expression is induced in a pi3k-hemizygous mutant, further demonstrating that PI3K is involved in the regulation of proline catabolism through transcriptional regulation of ProDH1. A broader metabolomic analysis indicates that LY294002 also reduced other metabolites, such as hydrophobic and aromatic amino acids and sugars like raffinose.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 60 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 2%
Unknown 59 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 18%
Researcher 11 18%
Student > Master 6 10%
Student > Doctoral Student 3 5%
Student > Postgraduate 3 5%
Other 11 18%
Unknown 15 25%
Readers by discipline Count As %
Agricultural and Biological Sciences 28 47%
Biochemistry, Genetics and Molecular Biology 10 17%
Unspecified 2 3%
Medicine and Dentistry 2 3%
Computer Science 1 2%
Other 1 2%
Unknown 16 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 January 2015.
All research outputs
#20,248,338
of 22,776,824 outputs
Outputs from Frontiers in Plant Science
#15,972
of 20,073 outputs
Outputs of similar age
#295,695
of 352,438 outputs
Outputs of similar age from Frontiers in Plant Science
#173
of 218 outputs
Altmetric has tracked 22,776,824 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,073 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 352,438 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 218 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.