↓ Skip to main content

Simple preparation of plant epidermal tissue for laser microdissection and downstream quantitative proteome and carbohydrate analysis

Overview of attention for article published in Frontiers in Plant Science, March 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
40 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Simple preparation of plant epidermal tissue for laser microdissection and downstream quantitative proteome and carbohydrate analysis
Published in
Frontiers in Plant Science, March 2015
DOI 10.3389/fpls.2015.00194
Pubmed ID
Authors

Christian Falter, Dorothea Ellinger, Behrend von Hülsen, René Heim, Christian A. Voigt

Abstract

The outwardly directed cell wall and associated plasma membrane of epidermal cells represent the first layers of plant defense against intruding pathogens. Cell wall modifications and the formation of defense structures at sites of attempted pathogen penetration are decisive for plant defense. A precise isolation of these stress-induced structures would allow a specific analysis of regulatory mechanism and cell wall adaption. However, methods for large-scale epidermal tissue preparation from the model plant Arabidopsis thaliana, which would allow proteome and cell wall analysis of complete, laser-microdissected epidermal defense structures, have not been provided. We developed the adhesive tape - liquid cover glass technique (ACT) for simple leaf epidermis preparation from A. thaliana, which is also applicable on grass leaves. This method is compatible with subsequent staining techniques to visualize stress-related cell wall structures, which were precisely isolated from the epidermal tissue layer by laser microdissection (LM) coupled to laser pressure catapulting. We successfully demonstrated that these specific epidermal tissue samples could be used for quantitative downstream proteome and cell wall analysis. The development of the ACT for simple leaf epidermis preparation and the compatibility to LM and downstream quantitative analysis opens new possibilities in the precise examination of stress- and pathogen-related cell wall structures in epidermal cells. Because the developed tissue processing is also applicable on A. thaliana, well-established, model pathosystems that include the interaction with powdery mildews can be studied to determine principal regulatory mechanisms in plant-microbe interaction with their potential outreach into crop breeding.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 40 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 3%
Unknown 39 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 23%
Researcher 5 13%
Student > Master 4 10%
Student > Bachelor 3 8%
Student > Doctoral Student 3 8%
Other 8 20%
Unknown 8 20%
Readers by discipline Count As %
Agricultural and Biological Sciences 20 50%
Biochemistry, Genetics and Molecular Biology 6 15%
Chemistry 2 5%
Environmental Science 1 3%
Chemical Engineering 1 3%
Other 2 5%
Unknown 8 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 March 2015.
All research outputs
#15,160,034
of 23,316,003 outputs
Outputs from Frontiers in Plant Science
#9,637
of 21,157 outputs
Outputs of similar age
#149,942
of 264,602 outputs
Outputs of similar age from Frontiers in Plant Science
#115
of 251 outputs
Altmetric has tracked 23,316,003 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 21,157 research outputs from this source. They receive a mean Attention Score of 3.9. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,602 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 251 others from the same source and published within six weeks on either side of this one. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.