↓ Skip to main content

The knottin-like Blufensin family regulates genes involved in nuclear import and the secretory pathway in barley-powdery mildew interactions

Overview of attention for article published in Frontiers in Plant Science, June 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
38 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The knottin-like Blufensin family regulates genes involved in nuclear import and the secretory pathway in barley-powdery mildew interactions
Published in
Frontiers in Plant Science, June 2015
DOI 10.3389/fpls.2015.00409
Pubmed ID
Authors

Weihui Xu, Yan Meng, Priyanka Surana, Greg Fuerst, Dan Nettleton, Roger P. Wise

Abstract

Plants have evolved complex regulatory mechanisms to control a multi-layered defense response to microbial attack. Both temporal and spatial gene expression are tightly regulated in response to pathogen ingress, modulating both positive and negative control of defense. BLUFENSINs, small knottin-like peptides in barley, wheat, and rice, are highly induced by attack from fungal pathogens, in particular, the obligate biotrophic fungus, Blumeria graminis f. sp. hordei (Bgh), causal agent of barley powdery mildew. Previous research indicated that Blufensin1 (Bln1) functions as a negative regulator of basal defense mechanisms. In the current report, we show that BLN1 and BLN2 can both be secreted to the apoplast and Barley stripe mosaic virus (BSMV)-mediated overexpression of Bln2 increases susceptibility of barley to Bgh. Bimolecular fluorescence complementation (BiFC) assays signify that BLN1 and BLN2 can interact with each other, and with calmodulin. We then used BSMV-induced gene silencing to knock down Bln1, followed by Barley1 GeneChip transcriptome analysis, to identify additional host genes influenced by Bln1. Analysis of differential expression revealed a gene set enriched for those encoding proteins annotated to nuclear import and the secretory pathway, particularly Importin α1-b and Sec61 γ subunits. Further functional analysis of these two affected genes showed that when silenced, they also reduced susceptibility to Bgh. Taken together, we postulate that Bln1 is co-opted by Bgh to facilitate transport of disease-related host proteins or effectors, influencing the establishment of Bgh compatibility on its barley host.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 38 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 38 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 32%
Researcher 7 18%
Student > Master 4 11%
Student > Postgraduate 3 8%
Professor 2 5%
Other 9 24%
Unknown 1 3%
Readers by discipline Count As %
Agricultural and Biological Sciences 26 68%
Biochemistry, Genetics and Molecular Biology 4 11%
Computer Science 2 5%
Earth and Planetary Sciences 1 3%
Engineering 1 3%
Other 0 0%
Unknown 4 11%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 September 2018.
All research outputs
#15,333,503
of 22,805,349 outputs
Outputs from Frontiers in Plant Science
#10,824
of 20,084 outputs
Outputs of similar age
#156,877
of 267,098 outputs
Outputs of similar age from Frontiers in Plant Science
#150
of 274 outputs
Altmetric has tracked 22,805,349 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,084 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 40th percentile – i.e., 40% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 267,098 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 274 others from the same source and published within six weeks on either side of this one. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.