↓ Skip to main content

Genome-wide identification of CAMTA gene family members in Medicago truncatula and their expression during root nodule symbiosis and hormone treatments

Overview of attention for article published in Frontiers in Plant Science, June 2015
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (52nd percentile)
  • Good Attention Score compared to outputs of the same age and source (75th percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
43 Dimensions

Readers on

mendeley
45 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genome-wide identification of CAMTA gene family members in Medicago truncatula and their expression during root nodule symbiosis and hormone treatments
Published in
Frontiers in Plant Science, June 2015
DOI 10.3389/fpls.2015.00459
Pubmed ID
Authors

Yanjun Yang, Tao Sun, Luqin Xu, Erxu Pi, Sheng Wang, Huizhong Wang, Chenjia Shen

Abstract

Calmodulin-binding transcription activators (CAMTAs) are well-characterized calmodulin-binding transcription factors in the plant kingdom. Previous work shows that CAMTAs play important roles in various biological processes including disease resistance, herbivore attack response, and abiotic stress tolerance. However, studies that address the function of CAMTAs during the establishment of symbiosis between legumes and rhizobia are still lacking. This study undertook comprehensive identification and analysis of CAMTA genes using the latest updated M. truncatula genome. All the MtCAMTA genes were expressed in a tissues-specific manner and were responsive to environmental stress-related hormones. The expression profiling of MtCAMTA genes during the early phase of Sinorhizobium meliloti infection was also analyzed. Our data showed that the expression of most MtCAMTA genes was suppressed in roots by S. meliloti infection. The responsiveness of MtCAMTAs to S. meliloti infection indicated that they may function as calcium-regulated transcription factors in the early nodulation signaling pathway. In addition, bioinformatics analysis showed that CAMTA binding sites existed in the promoter regions of various early rhizobial infection response genes, suggesting possible MtCAMTAs-regulated downstream candidate genes during the early phase of S. meliloti infection. Taken together, these results provide basic information about MtCAMTAs in the model legume M. truncatula, and the involvement of MtCAMTAs in nodule organogenesis. This information furthers our understanding of MtCAMTA protein functions in M. truncatula and opens new avenues for continued research.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 45 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 45 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 22%
Student > Master 7 16%
Student > Doctoral Student 6 13%
Researcher 4 9%
Student > Bachelor 3 7%
Other 6 13%
Unknown 9 20%
Readers by discipline Count As %
Agricultural and Biological Sciences 26 58%
Biochemistry, Genetics and Molecular Biology 8 18%
Environmental Science 1 2%
Unknown 10 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 July 2015.
All research outputs
#14,784,639
of 25,374,917 outputs
Outputs from Frontiers in Plant Science
#6,903
of 24,598 outputs
Outputs of similar age
#129,872
of 278,845 outputs
Outputs of similar age from Frontiers in Plant Science
#63
of 274 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,598 research outputs from this source. They receive a mean Attention Score of 3.9. This one has gotten more attention than average, scoring higher than 71% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 278,845 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.
We're also able to compare this research output to 274 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 75% of its contemporaries.