↓ Skip to main content

Pushing the boundaries of resistance: insights from Brachypodium-rust interactions

Overview of attention for article published in Frontiers in Plant Science, July 2015
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (53rd percentile)
  • Good Attention Score compared to outputs of the same age and source (72nd percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
47 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Pushing the boundaries of resistance: insights from Brachypodium-rust interactions
Published in
Frontiers in Plant Science, July 2015
DOI 10.3389/fpls.2015.00558
Pubmed ID
Authors

Melania Figueroa, Claudia V. Castell-Miller, Feng Li, Scot H. Hulbert, James M. Bradeen

Abstract

The implications of global population growth urge transformation of current food and bioenergy production systems to sustainability. Members of the family Poaceae are of particular importance both in food security and for their applications as biofuel substrates. For centuries, rust fungi have threatened the production of valuable crops such as wheat, barley, oat, and other small grains; similarly, biofuel crops can also be susceptible to these pathogens. Emerging rust pathogenic races with increased virulence and recurrent rust epidemics around the world point out the vulnerability of monocultures. Basic research in plant immunity, especially in model plants, can make contributions to understanding plant resistance mechanisms and improve disease management strategies. The development of the grass Brachypodium distachyon as a genetically tractable model for monocots, especially temperate cereals and grasses, offers the possibility to overcome the experimental challenges presented by the genetic and genomic complexities of economically valuable crop plants. The numerous resources and tools available in Brachypodium have opened new doors to investigate the underlying molecular and genetic bases of plant-microbe interactions in grasses and evidence demonstrating the applicability and advantages of working with B. distachyon is increasing. Importantly, several interactions between B. distachyon and devastating plant pathogens, such rust fungi, have been examined in the context of non-host resistance. Here, we discuss the use of B. distachyon in these various pathosystems. Exploiting B. distachyon to understand the mechanisms underpinning disease resistance to non-adapted rust fungi may provide effective and durable approaches to fend off these pathogens. The close phylogenetic relationship among Brachypodium spp. and grasses with industrial and agronomic value support harnessing this model plant to improve cropping systems and encourage its use in translational research.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 47 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
France 1 2%
Unknown 46 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 28%
Researcher 8 17%
Student > Master 4 9%
Professor 3 6%
Student > Bachelor 3 6%
Other 10 21%
Unknown 6 13%
Readers by discipline Count As %
Agricultural and Biological Sciences 26 55%
Biochemistry, Genetics and Molecular Biology 6 13%
Social Sciences 3 6%
Environmental Science 2 4%
Medicine and Dentistry 2 4%
Other 2 4%
Unknown 6 13%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 August 2015.
All research outputs
#14,576,440
of 25,053,336 outputs
Outputs from Frontiers in Plant Science
#6,810
of 24,034 outputs
Outputs of similar age
#124,748
of 268,690 outputs
Outputs of similar age from Frontiers in Plant Science
#69
of 263 outputs
Altmetric has tracked 25,053,336 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,034 research outputs from this source. They receive a mean Attention Score of 3.9. This one has gotten more attention than average, scoring higher than 70% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 268,690 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.
We're also able to compare this research output to 263 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.