↓ Skip to main content

Proteomic and metabolic traits of grape exocarp to explain different anthocyanin concentrations of the cultivars

Overview of attention for article published in Frontiers in Plant Science, August 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Readers on

mendeley
46 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Proteomic and metabolic traits of grape exocarp to explain different anthocyanin concentrations of the cultivars
Published in
Frontiers in Plant Science, August 2015
DOI 10.3389/fpls.2015.00603
Pubmed ID
Authors

Alfredo S. Negri, Bhakti Prinsi, Osvaldo Failla, Attilio Scienza, Luca Espen

Abstract

The role of grape berry skin as a protective barrier against damage by physical injuries and pathogen attacks requires a metabolism able to sustain biosynthetic activities such as those relating to secondary compounds (i.e., flavonoids). In order to draw the attention on these biochemical processes, a proteomic and metabolomic comparative analysis was performed among Riesling Italico, Pinot Gris, Pinot Noir, and Croatina cultivars, which are known to accumulate anthocyanins to a different extent. The application of multivariate statistics on the dataset pointed out that the cultivars were distinguishable from each other and the order in which they were grouped mainly reflected their relative anthocyanin contents. Sorting the spots according to their significance 100 proteins were characterized by LC-ESI-MS/MS. Through GC-MS, performed in Selected Ion Monitoring (SIM) mode, 57 primary metabolites were analyzed and the differences in abundance of 16 of them resulted statistically significant to ANOVA test. Considering the functional distribution, the identified proteins were involved in many physiological processes such as stress, defense, carbon metabolism, energy conversion and secondary metabolism. The trends of some metabolites were related to those of the protein data. Taken together, the results permitted to highlight the relationships between the secondary compound pathways and the main metabolism (e.g., glycolysis and TCA cycle). Moreover, the trend of accumulation of many proteins involved in stress responses, reinforced the idea that they could play a role in the cultivar specific developmental plan.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 46 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Brazil 1 2%
Unknown 45 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 13 28%
Student > Ph. D. Student 8 17%
Student > Bachelor 5 11%
Student > Master 5 11%
Student > Doctoral Student 1 2%
Other 4 9%
Unknown 10 22%
Readers by discipline Count As %
Agricultural and Biological Sciences 26 57%
Biochemistry, Genetics and Molecular Biology 4 9%
Engineering 2 4%
Nursing and Health Professions 1 2%
Sports and Recreations 1 2%
Other 3 7%
Unknown 9 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 August 2015.
All research outputs
#15,289,793
of 22,818,766 outputs
Outputs from Frontiers in Plant Science
#10,589
of 20,118 outputs
Outputs of similar age
#153,755
of 264,230 outputs
Outputs of similar age from Frontiers in Plant Science
#140
of 283 outputs
Altmetric has tracked 22,818,766 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,118 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 46th percentile – i.e., 46% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,230 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 283 others from the same source and published within six weeks on either side of this one. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.