↓ Skip to main content

Common protein sequence signatures associate with Sclerotinia borealis lifestyle and secretion in fungal pathogens of the Sclerotiniaceae

Overview of attention for article published in Frontiers in Plant Science, September 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (70th percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
33 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Common protein sequence signatures associate with Sclerotinia borealis lifestyle and secretion in fungal pathogens of the Sclerotiniaceae
Published in
Frontiers in Plant Science, September 2015
DOI 10.3389/fpls.2015.00776
Pubmed ID
Authors

Thomas Badet, Rémi Peyraud, Sylvain Raffaele

Abstract

Fungal plant pathogens produce secreted proteins adapted to function outside fungal cells to facilitate colonization of their hosts. In many cases such as for fungi from the Sclerotiniaceae family the repertoire and function of secreted proteins remains elusive. In the Sclerotiniaceae, whereas Sclerotinia sclerotiorum and Botrytis cinerea are cosmopolitan broad host-range plant pathogens, Sclerotinia borealis has a psychrophilic lifestyle with a low optimal growth temperature, a narrow host range and geographic distribution. To spread successfully, S. borealis must synthesize proteins adapted to function in its specific environment. The search for signatures of adaptation to S. borealis lifestyle may therefore help revealing proteins critical for colonization of the environment by Sclerotiniaceae fungi. Here, we analyzed amino acids usage and intrinsic protein disorder in alignments of groups of orthologous proteins from the three Sclerotiniaceae species. We found that enrichment in Thr, depletion in Glu and Lys, and low disorder frequency in hot loops are significantly associated with S. borealis proteins. We designed an index to report bias in these properties and found that high index proteins were enriched among secreted proteins in the three Sclerotiniaceae fungi. High index proteins were also enriched in function associated with plant colonization in S. borealis, and in in planta-induced genes in S. sclerotiorum. We highlight a novel putative antifreeze protein and a novel putative lytic polysaccharide monooxygenase identified through our pipeline as candidate proteins involved in colonization of the environment. Our findings suggest that similar protein signatures associate with S. borealis lifestyle and with secretion in the Sclerotiniaceae. These signatures may be useful for identifying proteins of interest as targets for the management of plant diseases.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 33 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 33 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 21%
Student > Ph. D. Student 7 21%
Student > Master 3 9%
Student > Postgraduate 2 6%
Student > Bachelor 2 6%
Other 2 6%
Unknown 10 30%
Readers by discipline Count As %
Agricultural and Biological Sciences 10 30%
Biochemistry, Genetics and Molecular Biology 7 21%
Chemistry 3 9%
Engineering 2 6%
Neuroscience 1 3%
Other 1 3%
Unknown 9 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 September 2015.
All research outputs
#14,175,907
of 22,829,083 outputs
Outputs from Frontiers in Plant Science
#7,925
of 20,139 outputs
Outputs of similar age
#140,917
of 274,665 outputs
Outputs of similar age from Frontiers in Plant Science
#102
of 354 outputs
Altmetric has tracked 22,829,083 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,139 research outputs from this source. They receive a mean Attention Score of 4.0. This one has gotten more attention than average, scoring higher than 59% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 274,665 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 354 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.