↓ Skip to main content

Contrasting Changes Caused by Drought and Submergence Stresses in Bermudagrass (Cynodon dactylon)

Overview of attention for article published in Frontiers in Plant Science, November 2015
Altmetric Badge

Mentioned by

twitter
2 X users

Readers on

mendeley
41 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Contrasting Changes Caused by Drought and Submergence Stresses in Bermudagrass (Cynodon dactylon)
Published in
Frontiers in Plant Science, November 2015
DOI 10.3389/fpls.2015.00951
Pubmed ID
Authors

Tiantian Ye, Haitao Shi, Yanping Wang, Zhulong Chan

Abstract

In this study, we investigated the mechanisms by which bermudagrass withstands the drought and submergence stresses through physiological, proteomic and metabolomic approaches. The results showed that significant physiological changes were observed after drought treatment, while only slight changes after submergence treatment, including compatible solute contents, ROS levels and antioxidant enzyme activities. Proteomics results showed that 81 proteins regulated by drought or submergence treatment were identified by MALDI-TOF-MS. Among them, 76 proteins were modulated by drought stress with 46 increased abundance and 30 decreased abundance. Forty-five showed abundance changes after submergence treatment with 10 increased and 35 decreased. Pathway enrichment analysis revealed that pathways of amino acid metabolism and mitochondrial electron transport/ATP synthesis were only enriched by drought treatment, while other pathways including photosynthesis, biodegradation of xenobiotics, oxidative pentose phosphate, glycolysis and redox were commonly over-represented after both drought and submergence treatments. Metabolomic analysis indicated that most of the metabolites were up-regulated by drought stress, while 34 of 40 metabolites contents exhibited down-regulation or no significant changes when exposed to submergence stress, including sugars and sugar alcohols. These data indicated that drought stress extensively promoted photosynthesis and redox metabolisms while submergence stress caused declined metabolisms and dormancy in Cynodon dactylon. Taken together, the quiescence strategy with retarded growth might allow bermudagrass to be adaptive to long-term submerged environment, while activation of photosynthesis and redox, and accumulation of compatible solutes and molecular chaperones increased bermudagrass tolerance to drought stress.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 41 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 41 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 12%
Researcher 5 12%
Student > Master 5 12%
Student > Doctoral Student 4 10%
Lecturer 2 5%
Other 6 15%
Unknown 14 34%
Readers by discipline Count As %
Agricultural and Biological Sciences 18 44%
Biochemistry, Genetics and Molecular Biology 5 12%
Environmental Science 1 2%
Veterinary Science and Veterinary Medicine 1 2%
Unspecified 1 2%
Other 1 2%
Unknown 14 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 December 2015.
All research outputs
#18,430,119
of 22,832,057 outputs
Outputs from Frontiers in Plant Science
#13,748
of 20,146 outputs
Outputs of similar age
#203,078
of 282,783 outputs
Outputs of similar age from Frontiers in Plant Science
#243
of 379 outputs
Altmetric has tracked 22,832,057 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,146 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 20th percentile – i.e., 20% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 282,783 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 379 others from the same source and published within six weeks on either side of this one. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.