↓ Skip to main content

The Receptor for Activated C Kinase in Plant Signaling: Tale of a Promiscuous Little Molecule

Overview of attention for article published in Frontiers in Plant Science, December 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (54th percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
44 Dimensions

Readers on

mendeley
62 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The Receptor for Activated C Kinase in Plant Signaling: Tale of a Promiscuous Little Molecule
Published in
Frontiers in Plant Science, December 2015
DOI 10.3389/fpls.2015.01090
Pubmed ID
Authors

Tania Islas-Flores, Ahasanur Rahman, Hemayet Ullah, Marco A. Villanueva

Abstract

Two decades after the first report of the plant homolog of the Receptor for Activated C Kinase 1 (RACK1) in cultured tobacco BY2 cells, a significant advancement has been made in the elucidation of its cellular and molecular role. The protein is now implicated in many biological functions including protein translation, multiple hormonal responses, developmental processes, pathogen infection resistance, environmental stress responses, and miRNA production. Such multiple functional roles are consistent with the scaffolding nature of the plant RACK1 protein. A significant advance was achieved when the β-propeller structure of the Arabidopsis RACK1A isoform was elucidated, thus revealing that its conserved seven WD repeats also assembled into this typical topology. From its crystal structure, it became apparent that it shares the structural platform for the interaction with ligands identified in other systems such as mammals. Although RACK1 proteins maintain conserved Protein Kinase C binding sites, the lack of a bona fide PKC adds complexity and enigma to the nature of the ligand partners with which RACK1 interacts in plants. Nevertheless, ligands recently identified using the split-ubiquitin based and conventional yeast two-hybrid assays, have revealed that plant RACK1 is involved in several processes that include defense response, drought and salt stress, ribosomal function, cell wall biogenesis, and photosynthesis. The information acquired indicates that, in spite of the high degree of conservation of its structure, the functions of the plant RACK1 homolog appear to be distinct and diverse from those in yeast, mammals, insects, etc. In this review, we take a critical look at the novel information regarding the many functions in which plant RACK1 has been reported to participate, with a special emphasis on the information on its currently identified and missing ligand partners.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 62 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Unknown 61 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 12 19%
Student > Ph. D. Student 11 18%
Student > Bachelor 7 11%
Student > Doctoral Student 6 10%
Student > Master 6 10%
Other 8 13%
Unknown 12 19%
Readers by discipline Count As %
Agricultural and Biological Sciences 28 45%
Biochemistry, Genetics and Molecular Biology 15 24%
Immunology and Microbiology 1 2%
Psychology 1 2%
Physics and Astronomy 1 2%
Other 1 2%
Unknown 15 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 December 2015.
All research outputs
#14,829,358
of 22,834,308 outputs
Outputs from Frontiers in Plant Science
#9,255
of 20,148 outputs
Outputs of similar age
#216,349
of 388,741 outputs
Outputs of similar age from Frontiers in Plant Science
#152
of 416 outputs
Altmetric has tracked 22,834,308 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,148 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 388,741 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 416 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.