↓ Skip to main content

Dosage Sensitivity of RPL9 and Concerted Evolution of Ribosomal Protein Genes in Plants

Overview of attention for article published in Frontiers in Plant Science, December 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (69th percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
22 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Dosage Sensitivity of RPL9 and Concerted Evolution of Ribosomal Protein Genes in Plants
Published in
Frontiers in Plant Science, December 2015
DOI 10.3389/fpls.2015.01102
Pubmed ID
Authors

Deborah Devis, Sue M. Firth, Zhe Liang, Mary E. Byrne

Abstract

The ribosome in higher eukaryotes is a large macromolecular complex composed of four rRNAs and eighty different ribosomal proteins. In plants, each ribosomal protein is encoded by multiple genes. Duplicate genes within a family are often necessary to provide a threshold dose of a ribosomal protein but in some instances appear to have non-redundant functions. Here, we addressed whether divergent members of the RPL9 gene family are dosage sensitive or whether these genes have non-overlapping functions. The RPL9 family in Arabidopsis thaliana comprises two nearly identical members, RPL9B and RPL9C, and a more divergent member, RPL9D. Mutations in RPL9C and RPL9D genes lead to delayed growth early in development, and loss of both genes is embryo lethal, indicating that these are dosage-sensitive and redundant genes. Phylogenetic analysis of RPL9 as well as RPL4, RPL5, RPL27a, RPL36a, and RPS6 family genes in the Brassicaceae indicated that multicopy ribosomal protein genes have been largely retained following whole genome duplication. However, these gene families also show instances of tandem duplication, small scale deletion, and evidence of gene conversion. Furthermore, phylogenetic analysis of RPL9 genes in angiosperm species showed that genes within a species are more closely related to each other than to RPL9 genes in other species, suggesting ribosomal protein genes undergo convergent evolution. Our analysis indicates that ribosomal protein gene retention following whole genome duplication contributes to the number of genes in a family. However, small scale rearrangements influence copy number and likely drive concerted evolution of these dosage-sensitive genes.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 5%
Netherlands 1 5%
Unknown 20 91%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 27%
Researcher 5 23%
Student > Doctoral Student 4 18%
Professor > Associate Professor 2 9%
Student > Master 1 5%
Other 0 0%
Unknown 4 18%
Readers by discipline Count As %
Agricultural and Biological Sciences 10 45%
Biochemistry, Genetics and Molecular Biology 6 27%
Unknown 6 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 January 2016.
All research outputs
#13,960,695
of 22,835,198 outputs
Outputs from Frontiers in Plant Science
#7,276
of 20,148 outputs
Outputs of similar age
#197,816
of 390,452 outputs
Outputs of similar age from Frontiers in Plant Science
#99
of 390 outputs
Altmetric has tracked 22,835,198 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,148 research outputs from this source. They receive a mean Attention Score of 4.0. This one has gotten more attention than average, scoring higher than 60% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 390,452 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 390 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 69% of its contemporaries.