↓ Skip to main content

Tensiometer-Based Irrigation Management of Subirrigated Soilless Tomato: Effects of Substrate Matric Potential Control on Crop Performance

Overview of attention for article published in Frontiers in Plant Science, December 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
28 Dimensions

Readers on

mendeley
48 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Tensiometer-Based Irrigation Management of Subirrigated Soilless Tomato: Effects of Substrate Matric Potential Control on Crop Performance
Published in
Frontiers in Plant Science, December 2015
DOI 10.3389/fpls.2015.01150
Pubmed ID
Authors

Francesco F. Montesano, Francesco Serio, Carlo Mininni, Angelo Signore, Angelo Parente, Pietro Santamaria

Abstract

Automatic irrigation scheduling based on real-time measurement of soilless substrate water status has been recognized as a promising approach for efficient greenhouse irrigation management. Identification of proper irrigation set points is crucial for optimal crop performance, both in terms of yield and quality, and optimal use of water resources. The objective of the present study was to determine the effects of irrigation management based on matric potential control on growth, plant-water relations, yield, fruit quality traits, and water-use efficiency of subirrigated (through bench system) soilless tomato. Tensiometers were used for automatic irrigation control. Two cultivars, "Kabiria" (cocktail type) and "Diana" (intermediate type), and substrate water potential set-points (-30 and -60 hPa, for "Diana," and -30, -60, and -90 hPa for "Kabiria"), were compared. Compared with -30 hPa, water stress (corresponding to a -60 hPa irrigation set-point) reduced water consumption (14%), leaf area (18%), specific leaf area (19%), total yield (10%), and mean fruit weight (13%), irrespective of the cultivars. At -60 hPa, leaf-water status of plants, irrespective of the cultivars, showed an osmotic adjustment corresponding to a 9% average osmotic potential decrease. Total yield, mean fruit weight, plant water, and osmotic potential decreased linearly when -30, -60, and -90 hPa irrigation set-points were used in "Kabiria." Unmarketable yield in "Diana" increased when water stress was imposed (187 vs. 349 g·plant(-1), respectively, at -30 and -60 hPa), whereas the opposite effect was observed in "Kabiria," where marketable yield loss decreased linearly [by 1.05 g·plant(-1) per unit of substrate water potential (in the tested range from -30 to -90 hPa)]. In the second cluster, total soluble solids of the fruit and dry matter increased irrespective of the cultivars. In the seventh cluster, in "Diana," only a slight increase was observed from -30 vs. -60 hPa (3.3 and 1.3%, respectively, for TSS and dry matter), whereas in "Kabiria," the increase was more pronounced (8.7 and 12.0%, respectively, for TSS and dry matter), and further reduction in matric potential from -60 to -90 hPa confirmed the linear increase for both parameters. Both glucose and fructose concentrations increased linearly in "Kabiria" fruits on decreasing the substrate matric potential, whereas in "Diana," there was no increase. It is feasible to act on matric potential irrigation set-points to control plant response in terms of fruit quality parameters. Precise control of substrate water status may offer the possibility to steer crop response by enhancing different crop-performance components, namely yield and fruit quality, in subirrigated tomato. Small-sized fruit varieties benefit more from controlled water stress in terms of reduced unmarketable yield loss and fruit quality improvements.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 48 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Greece 1 2%
Unknown 47 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 11 23%
Student > Master 9 19%
Student > Bachelor 3 6%
Professor > Associate Professor 3 6%
Lecturer 3 6%
Other 8 17%
Unknown 11 23%
Readers by discipline Count As %
Agricultural and Biological Sciences 23 48%
Engineering 5 10%
Environmental Science 2 4%
Economics, Econometrics and Finance 2 4%
Business, Management and Accounting 1 2%
Other 2 4%
Unknown 13 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 December 2015.
All research outputs
#20,299,108
of 22,836,570 outputs
Outputs from Frontiers in Plant Science
#16,044
of 20,148 outputs
Outputs of similar age
#327,693
of 390,595 outputs
Outputs of similar age from Frontiers in Plant Science
#303
of 403 outputs
Altmetric has tracked 22,836,570 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,148 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 390,595 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 403 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.