↓ Skip to main content

Constitutive Expression of OsIAA9 Affects Starch Granules Accumulation and Root Gravitropic Response in Arabidopsis

Overview of attention for article published in Frontiers in Plant Science, December 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Readers on

mendeley
25 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Constitutive Expression of OsIAA9 Affects Starch Granules Accumulation and Root Gravitropic Response in Arabidopsis
Published in
Frontiers in Plant Science, December 2015
DOI 10.3389/fpls.2015.01156
Pubmed ID
Authors

Sha Luo, Qianqian Li, Shanda Liu, Nicholaas M. Pinas, Hainan Tian, Shucai Wang

Abstract

Auxin/Indole-3-Acetic Acid (Aux/IAA) genes are early auxin response genes ecoding short-lived transcriptional repressors, which regulate auxin signaling in plants by interplay with Auxin Response Factors (ARFs). Most of the Aux/IAA proteins contain four different domains, namely Domain I, Domain II, Domain III, and Domain IV. So far all Aux/IAA mutants with auxin-related phenotypes identified in both Arabidopsis and rice (Oryza sativa) are dominant gain-of-function mutants with mutations in Domain II of the corresponding Aux/IAA proteins, suggest that Aux/IAA proteins in both Arabidopsis and rice are largely functional redundantly, and they may have conserved functions. We report here the functional characterization of a rice Aux/IAA gene, OsIAA9. RT-PCR results showed that expression of OsIAA9 was induced by exogenously applied auxin, suggesting that OsIAA9 is an auxin response gene. Bioinformatic analysis showed that OsIAA9 has a repressor motif in Domain I, a degron in Domain II, and the conserved amino acid signatures for protein-protein interactions in Domain III and Domain IV. By generating transgenic plants expressing GFP-OsIAA9 and examining florescence in the transgenic plants, we found that OsIAA9 is localized in the nucleus. When transfected into protoplasts isolated from rosette leaves of Arabidopsis, OsIAA9 repressed reporter gene expression, and the repression was partially released by exogenously IAA. These results suggest that OsIAA9 is a canonical Aux/IAA protein. Protoplast transfection assays showed that OsIAA9 interacted ARF5, but not ARF6, 7, 8 and 19. Transgenic Arabidopsis plants expressing OsIAA9 have increased number of lateral roots, and reduced gravitropic response. Further analysis showed that OsIAA9 transgenic Arabidopsis plants accumulated fewer granules in their root tips and the distribution of granules was also affected. Taken together, our study showed that OsIAA9 is a transcriptional repressor, and it regulates gravitropic response when expressed in Arabidopsis by regulating granules accumulation and distribution in root tips.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 25 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Chile 1 4%
France 1 4%
Unknown 23 92%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 24%
Researcher 4 16%
Student > Master 4 16%
Other 1 4%
Professor 1 4%
Other 3 12%
Unknown 6 24%
Readers by discipline Count As %
Agricultural and Biological Sciences 14 56%
Biochemistry, Genetics and Molecular Biology 5 20%
Unknown 6 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 January 2016.
All research outputs
#17,779,578
of 22,836,570 outputs
Outputs from Frontiers in Plant Science
#12,022
of 20,148 outputs
Outputs of similar age
#265,340
of 390,618 outputs
Outputs of similar age from Frontiers in Plant Science
#206
of 403 outputs
Altmetric has tracked 22,836,570 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,148 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 390,618 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 403 others from the same source and published within six weeks on either side of this one. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.