↓ Skip to main content

A Bird’s-Eye View of Molecular Changes in Plant Gravitropism Using Omics Techniques

Overview of attention for article published in Frontiers in Plant Science, December 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (63rd percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
71 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A Bird’s-Eye View of Molecular Changes in Plant Gravitropism Using Omics Techniques
Published in
Frontiers in Plant Science, December 2015
DOI 10.3389/fpls.2015.01176
Pubmed ID
Authors

Oliver Schüler, Ruth Hemmersbach, Maik Böhmer

Abstract

During evolution, plants have developed mechanisms to adapt to a variety of environmental stresses, including drought, high salinity, changes in carbon dioxide levels and pathogens. Central signaling hubs and pathways that are regulated in response to these stimuli have been identified. In contrast to these well studied environmental stimuli, changes in transcript, protein and metabolite levels in response to a gravitational stimulus are less well understood. Amyloplasts, localized in statocytes of the root tip, in mesophyll cells of coleoptiles and in the elongation zone of the growing internodes comprise statoliths in higher plants. Deviations of the statocytes with respect to the earthly gravity vector lead to a displacement of statoliths relative to the cell due to their inertia and thus to gravity perception. Downstream signaling events, including the conversion from the biophysical signal of sedimentation of distinct heavy mass to a biochemical signal, however, remain elusive. More recently, technical advances, including clinostats, drop towers, parabolic flights, satellites, and the International Space Station, allowed researchers to study the effect of altered gravity conditions - real and simulated micro- as well as hypergravity on plants. This allows for a unique opportunity to study plant responses to a purely anthropogenic stress for which no evolutionary program exists. Furthermore, the requirement for plants as food and oxygen sources during prolonged manned space explorations led to an increased interest in the identi-fication of genes involved in the adaptation of plants to microgravity. Transcriptomic, proteomic, phosphoproteomic, and metabolomic profiling strategies provide a sensitive high-throughput approach to identify biochemical alterations in response to changes with respect to the influence of the gravitational vector and thus the acting gravitational force on the transcript, protein and metabolite level. This review aims at summarizing recent experimental approaches and discusses major observations.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 71 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Japan 1 1%
Unknown 70 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 17 24%
Researcher 16 23%
Student > Bachelor 7 10%
Student > Master 6 8%
Other 5 7%
Other 12 17%
Unknown 8 11%
Readers by discipline Count As %
Agricultural and Biological Sciences 30 42%
Biochemistry, Genetics and Molecular Biology 14 20%
Environmental Science 3 4%
Psychology 2 3%
Medicine and Dentistry 2 3%
Other 10 14%
Unknown 10 14%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 January 2016.
All research outputs
#14,703,021
of 22,836,570 outputs
Outputs from Frontiers in Plant Science
#9,038
of 20,148 outputs
Outputs of similar age
#214,211
of 390,633 outputs
Outputs of similar age from Frontiers in Plant Science
#144
of 403 outputs
Altmetric has tracked 22,836,570 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,148 research outputs from this source. They receive a mean Attention Score of 4.0. This one has gotten more attention than average, scoring higher than 54% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 390,633 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 403 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 63% of its contemporaries.