↓ Skip to main content

Chimeric DCL1-Partnering Proteins Provide Insights into the MicroRNA Pathway

Overview of attention for article published in Frontiers in Plant Science, January 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (75th percentile)

Mentioned by

twitter
4 X users

Readers on

mendeley
43 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Chimeric DCL1-Partnering Proteins Provide Insights into the MicroRNA Pathway
Published in
Frontiers in Plant Science, January 2016
DOI 10.3389/fpls.2015.01201
Pubmed ID
Authors

Rodrigo S. Reis, Andrew L. Eamens, Thomas H. Roberts, Peter M. Waterhouse

Abstract

In Arabidopsis thaliana, efficient microRNA (miRNA) production requires DICER-LIKE1 (DCL1) with the assistance of a partnering protein, DOUBLE-STRANDED RNA BINDING1 (DRB1) or DRB2. The presence of either of these DRB proteins is crucial to determine the mode of action of a miRNA; i.e., cleavage or translation inhibition. Here we studied the structural determinants for the role of DRB1 and DRB2 in the miRNA pathway. We developed a series of chimeric vectors encoding different functional domains of DRB1 and DRB2, and expressed these in the drb1 mutant background in Arabidopsis under the control of the native DRB1 promoter. Complementation of the drb1 developmental phenotype was used to assess the biological role that each functional domain of DRB1 and DRB2 mediates in the miRNA-guided transcript cleavage pathway. The DRB1 amino acid sequence differs considerably to that of DRB2, and analysis of drb1 transgenic lines revealed that the first dsRNA-binding domains of DRB1 and DRB2 are functionally similar; in contrast, the dsRBD2 of DRB1 and DRB2 appear functionally distinct. Our bioinformatic analysis further suggests that the C-terminal domain of DRB2 mediates a functional role in the miRNA pathway, whereas its counterpart in DRB1 is known to be dispensable. Our results provide evidence for the differences between DRB1 and DRB2 proteins in vivo, which may be essential for the selection of the miRNA regulatory mechanisms, and suggest that these features are conserved among land plants.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 43 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 2%
Poland 1 2%
Canada 1 2%
Unknown 40 93%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 30%
Researcher 10 23%
Student > Master 7 16%
Student > Doctoral Student 3 7%
Student > Bachelor 1 2%
Other 2 5%
Unknown 7 16%
Readers by discipline Count As %
Agricultural and Biological Sciences 23 53%
Biochemistry, Genetics and Molecular Biology 10 23%
Medicine and Dentistry 1 2%
Unknown 9 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 January 2016.
All research outputs
#13,453,089
of 22,837,982 outputs
Outputs from Frontiers in Plant Science
#6,662
of 20,152 outputs
Outputs of similar age
#189,334
of 393,663 outputs
Outputs of similar age from Frontiers in Plant Science
#105
of 458 outputs
Altmetric has tracked 22,837,982 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,152 research outputs from this source. They receive a mean Attention Score of 4.0. This one has gotten more attention than average, scoring higher than 64% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 393,663 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.
We're also able to compare this research output to 458 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 75% of its contemporaries.