↓ Skip to main content

A De novo Transcriptomic Approach to Identify Flavonoids and Anthocyanins “Switch-Off” in Olive (Olea europaea L.) Drupes at Different Stages of Maturation

Overview of attention for article published in Frontiers in Plant Science, January 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (71st percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
36 Dimensions

Readers on

mendeley
61 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A De novo Transcriptomic Approach to Identify Flavonoids and Anthocyanins “Switch-Off” in Olive (Olea europaea L.) Drupes at Different Stages of Maturation
Published in
Frontiers in Plant Science, January 2016
DOI 10.3389/fpls.2015.01246
Pubmed ID
Authors

Domenico L. Iaria, Adriana Chiappetta, Innocenzo Muzzalupo

Abstract

Highlights A de novo transcriptome reconstruction of olive drupes was performed in two genotypesGene expression was monitored during drupe development in two olive cultivarsTranscripts involved in flavonoid and anthocyanin pathways were analyzed in Cassanese and Leucocarpa cultivarsBoth cultivar and developmental stage impact gene expression in Olea europaea fruits. During ripening, the fruits of the olive tree (Olea europaea L.) undergo a progressive chromatic change characterized by the formation of a red-brown "spot" which gradually extends on the epidermis and in the innermost part of the mesocarp. This event finds an exception in the Leucocarpa cultivar, in which we observe a destabilized equilibrium between the metabolisms of chlorophyll and other pigments, particularly the anthocyanins whose switch-off during maturation promotes the white coloration of fruits. Despite its importance, genomic information on the olive tree is still lacking. Different RNA-seq libraries were generated from drupes of "Leucocarpa" and "Cassanese" olive genotypes, sampled at 100 and 130 days after flowering (DAF), and were used in order to identify transcripts involved in the main phenotypic changes of fruits during maturation and their corresponding expression patterns. A total of 103,359 transcripts were obtained and 3792 and 3064 were differentially expressed in "Leucocarpa" and "Cassanese" genotypes, respectively, during 100-130 DAF transition. Among them flavonoid and anthocyanin related transcripts such as phenylalanine ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H), 4-coumarate-CoA ligase (4CL), chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonol 3'-hydrogenase (F3'H), flavonol 3'5 '-hydrogenase (F3'5'H), flavonol synthase (FLS), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS), UDP-glucose:anthocianidin: flavonoid glucosyltransferase (UFGT) were identified. These results contribute to reducing the current gap in information regarding metabolic processes, including those linked to fruit pigmentation in the olive.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 61 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Chile 1 2%
Unknown 60 98%

Demographic breakdown

Readers by professional status Count As %
Unspecified 17 28%
Student > Ph. D. Student 12 20%
Researcher 8 13%
Student > Doctoral Student 7 11%
Student > Bachelor 3 5%
Other 5 8%
Unknown 9 15%
Readers by discipline Count As %
Agricultural and Biological Sciences 20 33%
Unspecified 17 28%
Biochemistry, Genetics and Molecular Biology 9 15%
Chemistry 3 5%
Social Sciences 1 2%
Other 1 2%
Unknown 10 16%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 February 2016.
All research outputs
#15,400,667
of 25,721,020 outputs
Outputs from Frontiers in Plant Science
#7,917
of 24,915 outputs
Outputs of similar age
#206,536
of 404,958 outputs
Outputs of similar age from Frontiers in Plant Science
#124
of 453 outputs
Altmetric has tracked 25,721,020 research outputs across all sources so far. This one is in the 38th percentile – i.e., 38% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,915 research outputs from this source. They receive a mean Attention Score of 3.9. This one has gotten more attention than average, scoring higher than 66% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 404,958 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 453 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.