↓ Skip to main content

Population Structure of a Widespread Species under Balancing Selection: The Case of Arbutus unedo L.

Overview of attention for article published in Frontiers in Plant Science, January 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Readers on

mendeley
24 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Population Structure of a Widespread Species under Balancing Selection: The Case of Arbutus unedo L.
Published in
Frontiers in Plant Science, January 2016
DOI 10.3389/fpls.2015.01264
Pubmed ID
Authors

Xabier Santiso, Lua Lopez, Rubén Retuerto, Rodolfo Barreiro

Abstract

Arbutus unedo L. is an evergreen shrub with a circum-Mediterranean distribution that also reaches the Eurosiberian region in northern Iberia, Atlantic France, and a disjunct population in southern Ireland. Due to the variety of climatic conditions across its distribution range, the populations of A. unedo were expected to display local adaptation. Conversely, common garden experiments revealed that diverse genotypes from a range of provenances produce similar phenotypes through adaptive plasticity, suggesting the action of stabilizing selection across its climatically heterogeneous range. Nonetheless, since a uniform response might also result from extensive gene flow, we have inferred the population structure of A. unedo and assessed whether its extended and largely one-dimensional range influences gene flow with the help of AFLP genotypes for 491 individuals from 19 populations covering the whole range of the species. As we had anticipated, gene flow is restricted in A. unedo, providing further support to the hypothesis that stabilizing selection is the most likely explanation for the homogeneous phenotypes along the range. The Euro-Siberian populations were not particularly isolated from the Mediterranean. Instead, there was a distinct genetic divide between the populations around the Mediterranean Sea and those sampled along Atlantic coasts from northern Africa up to Ireland. This genetic structure suggests the action of historic rather than biogeographic factors as it seems consistent with a scenario of independent glacial refugia in the Atlantic and Mediterranean portions of the range of A. unedo. Genetic exchange was likewise restricted within each set of populations. Nevertheless, isolation-by-distance (IBD) was stronger, and F ST increased faster with distance, along the Atlantic, suggesting that gene flow might be larger among Mediterranean populations. Genetic diversity was significantly lower in NW Iberia and Ireland than in other populations whereas Ireland was more closely related to populations in NW Iberia than to a population in Atlantic France, suggesting a postglacial stepping-stone colonization of the Atlantic coast. Altogether, our results show that stabilizing selection is able to homogenize the phenotypic response even when population structure is strong, gene flow is constrained, and the phylogeographic past is complex.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 24 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 21%
Student > Master 3 13%
Student > Bachelor 2 8%
Researcher 2 8%
Professor 1 4%
Other 3 13%
Unknown 8 33%
Readers by discipline Count As %
Agricultural and Biological Sciences 8 33%
Biochemistry, Genetics and Molecular Biology 3 13%
Environmental Science 2 8%
Unspecified 1 4%
Earth and Planetary Sciences 1 4%
Other 2 8%
Unknown 7 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 December 2022.
All research outputs
#18,349,015
of 23,577,654 outputs
Outputs from Frontiers in Plant Science
#12,815
of 21,632 outputs
Outputs of similar age
#273,066
of 398,989 outputs
Outputs of similar age from Frontiers in Plant Science
#228
of 465 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 21,632 research outputs from this source. They receive a mean Attention Score of 3.9. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 398,989 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 465 others from the same source and published within six weeks on either side of this one. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.