↓ Skip to main content

Burkholderia phytofirmans Inoculation-Induced Changes on the Shoot Cell Anatomy and Iron Accumulation Reveal Novel Components of Arabidopsis-Endophyte Interaction that Can Benefit Downstream Biomass…

Overview of attention for article published in Frontiers in Plant Science, January 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
49 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Burkholderia phytofirmans Inoculation-Induced Changes on the Shoot Cell Anatomy and Iron Accumulation Reveal Novel Components of Arabidopsis-Endophyte Interaction that Can Benefit Downstream Biomass Deconstruction
Published in
Frontiers in Plant Science, January 2016
DOI 10.3389/fpls.2016.00024
Pubmed ID
Authors

Shuai Zhao, Hui Wei, Chien-Yuan Lin, Yining Zeng, Melvin P. Tucker, Michael E. Himmel, Shi-You Ding

Abstract

It is known that plant growth promoting bacteria (PGPB) elicit positive effects on plant growth and biomass yield. However, the actual mechanism behind the plant-PGPB interaction is poorly understood, and the literature is scarce regarding the thermochemical pretreatability and enzymatic degradability of biomass derived from PGPB-inoculated plants. Most recent transcriptional analyses of PGPB strain Burkholderia phytofirmans PsJN inoculating potato in literature and Arabidopsis in our present study have revealed the expression of genes for ferritin and the biosynthesis and transport of siderophores (i.e., the molecules with high affinity for iron), respectively. The expression of such genes in the shoots of PsJN-inoculated plants prompted us to propose that PsJN-inoculation can improve the host plant's iron uptake and accumulation, which facilitates the downstream plant biomass pretreatment and conversion to simple sugars. In this study, we employed B. phytofirmans PsJN to inoculate the Arabidopsis thaliana plants, and conducted the first investigation for its effects on the biomass yield, the anatomical organization of stems, the iron accumulation, and the pretreatment and enzymatic hydrolysis of harvested biomass. The results showed that the strain PsJN stimulated plant growth in the earlier period of plant development and enlarged the cell size of stem piths, and it also indeed enhanced the essential metals uptake and accumulation in host plants. Moreover, we found that the PsJN-inoculated plant biomass released more glucose and xylose after hot water pretreatment and subsequent co-saccharification, which provided a novel insight into development of lignocellulosic biofuels from renewable biomass resources.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 49 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Brazil 1 2%
Unknown 47 96%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 20%
Student > Bachelor 8 16%
Researcher 7 14%
Student > Master 7 14%
Student > Doctoral Student 5 10%
Other 4 8%
Unknown 8 16%
Readers by discipline Count As %
Agricultural and Biological Sciences 15 31%
Biochemistry, Genetics and Molecular Biology 11 22%
Immunology and Microbiology 4 8%
Chemistry 2 4%
Pharmacology, Toxicology and Pharmaceutical Science 1 2%
Other 5 10%
Unknown 11 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 January 2016.
All research outputs
#20,303,950
of 22,842,950 outputs
Outputs from Frontiers in Plant Science
#16,060
of 20,166 outputs
Outputs of similar age
#333,204
of 396,346 outputs
Outputs of similar age from Frontiers in Plant Science
#367
of 499 outputs
Altmetric has tracked 22,842,950 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,166 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 396,346 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 499 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.