↓ Skip to main content

Molecular Evolution and Functional Diversification of Replication Protein A1 in Plants

Overview of attention for article published in Frontiers in Plant Science, January 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (63rd percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
27 Dimensions

Readers on

mendeley
51 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Molecular Evolution and Functional Diversification of Replication Protein A1 in Plants
Published in
Frontiers in Plant Science, January 2016
DOI 10.3389/fpls.2016.00033
Pubmed ID
Authors

Behailu B. Aklilu, Kevin M. Culligan

Abstract

Replication protein A (RPA) is a heterotrimeric, single-stranded DNA binding complex required for eukaryotic DNA replication, repair, and recombination. RPA is composed of three subunits, RPA1, RPA2, and RPA3. In contrast to single RPA subunit genes generally found in animals and yeast, plants encode multiple paralogs of RPA subunits, suggesting subfunctionalization. Genetic analysis demonstrates that five Arabidopsis thaliana RPA1 paralogs (RPA1A to RPA1E) have unique and overlapping functions in DNA replication, repair, and meiosis. We hypothesize here that RPA1 subfunctionalities will be reflected in major structural and sequence differences among the paralogs. To address this, we analyzed amino acid and nucleotide sequences of RPA1 paralogs from 25 complete genomes representing a wide spectrum of plants and unicellular green algae. We find here that the plant RPA1 gene family is divided into three general groups termed RPA1A, RPA1B, and RPA1C, which likely arose from two progenitor groups in unicellular green algae. In the family Brassicaceae the RPA1B and RPA1C groups have further expanded to include two unique sub-functional paralogs RPA1D and RPA1E, respectively. In addition, RPA1 groups have unique domains, motifs, cis-elements, gene expression profiles, and pattern of conservation that are consistent with proposed functions in monocot and dicot species, including a novel C-terminal zinc-finger domain found only in plant RPA1C-like sequences. These results allow for improved prediction of RPA1 subunit functions in newly sequenced plant genomes, and potentially provide a unique molecular tool to improve classification of Brassicaceae species.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 51 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Finland 1 2%
Netherlands 1 2%
Unknown 49 96%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 17 33%
Researcher 7 14%
Student > Bachelor 6 12%
Student > Doctoral Student 5 10%
Lecturer 1 2%
Other 5 10%
Unknown 10 20%
Readers by discipline Count As %
Agricultural and Biological Sciences 20 39%
Biochemistry, Genetics and Molecular Biology 15 29%
Arts and Humanities 1 2%
Unspecified 1 2%
Medicine and Dentistry 1 2%
Other 1 2%
Unknown 12 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 March 2016.
All research outputs
#14,246,461
of 22,842,950 outputs
Outputs from Frontiers in Plant Science
#8,163
of 20,166 outputs
Outputs of similar age
#207,714
of 396,346 outputs
Outputs of similar age from Frontiers in Plant Science
#163
of 499 outputs
Altmetric has tracked 22,842,950 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,166 research outputs from this source. They receive a mean Attention Score of 4.0. This one has gotten more attention than average, scoring higher than 55% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 396,346 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 499 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 63% of its contemporaries.