↓ Skip to main content

MES Buffer Affects Arabidopsis Root Apex Zonation and Root Growth by Suppressing Superoxide Generation in Root Apex

Overview of attention for article published in Frontiers in Plant Science, February 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
20 Dimensions

Readers on

mendeley
77 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
MES Buffer Affects Arabidopsis Root Apex Zonation and Root Growth by Suppressing Superoxide Generation in Root Apex
Published in
Frontiers in Plant Science, February 2016
DOI 10.3389/fpls.2016.00079
Pubmed ID
Authors

Tomoko Kagenishi, Ken Yokawa, František Baluška

Abstract

In plants, growth of roots and root hairs is regulated by the fine cellular control of pH and reactive oxygen species (ROS). MES, 2-(N-morpholino)ethanesulfonic acid as one of the Good's buffers has broadly been used for buffering medium, and it is thought to suit for plant growth with the concentration at 0.1% (w/v) because the buffer capacity of MES ranging pH 5.5-7.0 (for Arabidopsis, pH 5.8). However, many reports have shown that, in nature, roots require different pH values on the surface of specific root apex zones, namely meristem, transition zone, and elongation zone. Despite the fact that roots always grow on a media containing buffer molecule, little is known about impact of MES on root growth. Here, we have checked the effects of different concentrations of MES buffer using growing roots of Arabidopsis thaliana. Our results show that 1% of MES significantly inhibited root growth, the number of root hairs and length of meristem, whereas 0.1% promoted root growth and root apex area (region spanning from the root tip up to the transition zone). Furthermore, superoxide generation in root apex disappeared at 1% of MES. These results suggest that MES disturbs normal root morphogenesis by changing the ROS homeostasis in root apex.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 77 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 77 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 11 14%
Student > Bachelor 10 13%
Student > Ph. D. Student 9 12%
Researcher 7 9%
Professor > Associate Professor 6 8%
Other 14 18%
Unknown 20 26%
Readers by discipline Count As %
Agricultural and Biological Sciences 32 42%
Biochemistry, Genetics and Molecular Biology 19 25%
Environmental Science 2 3%
Engineering 2 3%
Unknown 22 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 March 2016.
All research outputs
#16,289,480
of 23,996,152 outputs
Outputs from Frontiers in Plant Science
#11,936
of 22,342 outputs
Outputs of similar age
#180,768
of 301,802 outputs
Outputs of similar age from Frontiers in Plant Science
#238
of 507 outputs
Altmetric has tracked 23,996,152 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 22,342 research outputs from this source. They receive a mean Attention Score of 3.9. This one is in the 40th percentile – i.e., 40% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 301,802 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 507 others from the same source and published within six weeks on either side of this one. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.