↓ Skip to main content

Multiple Mechanisms Increase Levels of Resistance in Rapistrum rugosum to ALS Herbicides

Overview of attention for article published in Frontiers in Plant Science, February 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
44 Dimensions

Readers on

mendeley
44 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Multiple Mechanisms Increase Levels of Resistance in Rapistrum rugosum to ALS Herbicides
Published in
Frontiers in Plant Science, February 2016
DOI 10.3389/fpls.2016.00169
Pubmed ID
Authors

Zahra M. Hatami, Javid Gherekhloo, Antonia M. Rojano-Delgado, Maria D. Osuna, Ricardo Alcántara, Pablo Fernández, Hamid R. Sadeghipour, Rafael De Prado

Abstract

Rapistrum rugosum (turnip weed) is a common weed of wheat fields in Iran, which is most often controlled by tribenuron-methyl (TM), a sulfonylurea (SU) belonging to the acetolactate synthase (ALS) inhibiting herbicides group. Several cases of unexplained control failure of R. rugosum by TM have been seen, especially in Golestan province-Iran. Hence, there is lack of research in evaluation of the level of resistance of the R. rugosum populations to TM, using whole plant dose-response and enzyme assays, then investigating some potential resistance mechanisms Results revealed that the resistance factor (RF) for resistant (R) populations was 2.5-6.6 fold higher than susceptible (S) plant. Neither foliar retention, nor (14)C-TM absorption and translocation were the mechanisms responsible for resistance in turnip weed. Metabolism of TM was the second resistant mechanism in two populations (Ag-R5 and G-1), in which three metabolites were found. The concentration of TM for 50% inhibition of ALS enzyme activity in vitro showed a high level of resistance to the herbicide (RFs were from 28 to 38) and cross-resistance to sulfonyl-aminocarbonyl-triazolinone (SCT), pyrimidinyl-thiobenzoate (PTB) and triazolopyrimidine (TP), with no cross-resistance to imidazolinone (IMI). Substitution Pro 197 to Ser 197 provided resistance to four of five ALS-inhibiting herbicides including SU, TP, PTB, and SCT with no resistance to IMI. These results documented the first case of R. rugosum resistant population worldwide and demonstrated that both RST and NRST mechanisms are involved to the resistance level to TM.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 44 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 44 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 9 20%
Student > Master 8 18%
Student > Ph. D. Student 7 16%
Student > Doctoral Student 5 11%
Student > Bachelor 2 5%
Other 7 16%
Unknown 6 14%
Readers by discipline Count As %
Agricultural and Biological Sciences 26 59%
Environmental Science 1 2%
Computer Science 1 2%
Psychology 1 2%
Engineering 1 2%
Other 0 0%
Unknown 14 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 March 2016.
All research outputs
#17,789,675
of 22,851,489 outputs
Outputs from Frontiers in Plant Science
#12,048
of 20,193 outputs
Outputs of similar age
#203,053
of 298,740 outputs
Outputs of similar age from Frontiers in Plant Science
#243
of 481 outputs
Altmetric has tracked 22,851,489 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,193 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 298,740 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 481 others from the same source and published within six weeks on either side of this one. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.