↓ Skip to main content

MicroRNA Regulatory Mechanisms on Citrus sinensis leaves to Magnesium-Deficiency

Overview of attention for article published in Frontiers in Plant Science, March 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
38 Dimensions

Readers on

mendeley
38 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
MicroRNA Regulatory Mechanisms on Citrus sinensis leaves to Magnesium-Deficiency
Published in
Frontiers in Plant Science, March 2016
DOI 10.3389/fpls.2016.00201
Pubmed ID
Authors

Ma, Cui-Lan, Qi, Yi-Ping, Liang, Wei-Wei, Yang, Lin-Tong, Lu, Yi-Bin, Guo, Peng, Ye, Xin, Chen, Li-Song

Abstract

Magnesium (Mg)-deficiency, which affects crop productivity and quality, widespreadly exists in many agricultural crops, including citrus. However, very limited data are available on Mg-deficiency-responsive microRNAs (miRNAs) in higher plants. Using Illumina sequencing, we isolated 75 (73 known and 2 novel) up- and 71 (64 known and 7 novel) down-regulated miRNAs from Mg-deficient Citrus sinensis leaves. In addition to the remarkable metabolic flexibility as indicated by the great alteration of miRNA expression, the adaptive responses of leaf miRNAs to Mg-deficiency might also involve the following several aspects: (a) up-regulating stress-related genes by down-regulating miR164, miR7812, miR5742, miR3946, and miR5158; (b) enhancing cell transport due to decreased expression of miR3946 and miR5158 and increased expression of miR395, miR1077, miR1160, and miR8019; (c) activating lipid metabolism-related genes by repressing miR158, miR5256, and miR3946; (d) inducing cell wall-related gene expansin 8A by repressing miR779; and (e) down-regulating the expression of genes involved in the maintenance of S, K and Cu by up-regulating miR395 and miR6426. To conclude, we isolated some new known miRNAs (i.e., miR7812, miR8019, miR6218, miR1533, miR6426, miR5256, miR5742, miR5561, miR5158, and miR5818) responsive to nutrient deficiencies and found some candidate miRNAs that might contribute to Mg-deficiency tolerance. Therefore, our results not only provide novel information about the responses of plant to Mg-deficiency, but also are useful for obtaining the key miRNAs for plant Mg-deficiency tolerance.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 38 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 3%
Unknown 37 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 21%
Researcher 8 21%
Student > Bachelor 5 13%
Student > Postgraduate 3 8%
Professor > Associate Professor 2 5%
Other 4 11%
Unknown 8 21%
Readers by discipline Count As %
Agricultural and Biological Sciences 12 32%
Biochemistry, Genetics and Molecular Biology 9 24%
Chemistry 2 5%
Medicine and Dentistry 2 5%
Earth and Planetary Sciences 1 3%
Other 0 0%
Unknown 12 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 May 2017.
All research outputs
#18,171,876
of 23,342,092 outputs
Outputs from Frontiers in Plant Science
#12,559
of 21,222 outputs
Outputs of similar age
#204,986
of 300,158 outputs
Outputs of similar age from Frontiers in Plant Science
#244
of 484 outputs
Altmetric has tracked 23,342,092 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 21,222 research outputs from this source. They receive a mean Attention Score of 3.9. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 300,158 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 484 others from the same source and published within six weeks on either side of this one. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.