↓ Skip to main content

Boron Toxicity Causes Multiple Effects on Malus domestica Pollen Tube Growth

Overview of attention for article published in Frontiers in Plant Science, February 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (55th percentile)

Mentioned by

twitter
2 X users

Readers on

mendeley
45 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Boron Toxicity Causes Multiple Effects on Malus domestica Pollen Tube Growth
Published in
Frontiers in Plant Science, February 2016
DOI 10.3389/fpls.2016.00208
Pubmed ID
Authors

Kefeng Fang, Weiwei Zhang, Yu Xing, Qing Zhang, Liu Yang, Qingqin Cao, Ling Qin

Abstract

Boron is an important micronutrient for plants. However, boron is also toxic to cells at high concentrations, although the mechanism of this toxicity is not known. This study aimed to evaluate the effect of boron toxicity on Malus domestica pollen tube growth and its possible regulatory pathway. Our results showed that a high concentration of boron inhibited pollen germination and tube growth and led to the morphological abnormality of pollen tubes. Fluorescent labeling coupled with a scanning ion-selective electrode technique detected that boron toxicity could decrease [Ca(2+)]c and induce the disappearance of the [Ca(2+)]c gradient, which are critical for pollen tube polar growth. Actin filaments were therefore altered by boron toxicity. Immuno-localization and fluorescence labeling, together with fourier-transform infrared analysis, suggested that boron toxicity influenced the accumulation and distribution of callose, de-esterified pectins, esterified pectins, and arabinogalactan proteins in pollen tubes. All of the above results provide new insights into the regulatory role of boron in pollen tube development. In summary, boron likely plays a structural and regulatory role in relation to [Ca(2+)]c, actin cytoskeleton and cell wall components and thus regulates Malus domestica pollen germination and tube polar growth.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 45 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 45 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 20%
Researcher 8 18%
Student > Master 5 11%
Student > Bachelor 3 7%
Professor 3 7%
Other 6 13%
Unknown 11 24%
Readers by discipline Count As %
Agricultural and Biological Sciences 20 44%
Environmental Science 3 7%
Biochemistry, Genetics and Molecular Biology 2 4%
Chemistry 2 4%
Nursing and Health Professions 1 2%
Other 3 7%
Unknown 14 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 February 2016.
All research outputs
#15,311,064
of 22,852,911 outputs
Outputs from Frontiers in Plant Science
#10,633
of 20,198 outputs
Outputs of similar age
#175,654
of 297,860 outputs
Outputs of similar age from Frontiers in Plant Science
#207
of 481 outputs
Altmetric has tracked 22,852,911 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,198 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 46th percentile – i.e., 46% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 297,860 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 481 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 55% of its contemporaries.