↓ Skip to main content

Diverse Evolutionary Trajectories for Small RNA Biogenesis Genes in the Oomycete Genus Phytophthora

Overview of attention for article published in Frontiers in Plant Science, March 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (73rd percentile)
  • High Attention Score compared to outputs of the same age and source (86th percentile)

Mentioned by

twitter
10 X users

Readers on

mendeley
33 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Diverse Evolutionary Trajectories for Small RNA Biogenesis Genes in the Oomycete Genus Phytophthora
Published in
Frontiers in Plant Science, March 2016
DOI 10.3389/fpls.2016.00284
Pubmed ID
Authors

Stephanie R. Bollmann, Yufeng Fang, Caroline M. Press, Brett M. Tyler, Niklaus J. Grünwald

Abstract

Gene regulation by small RNA pathways is ubiquitous among eukaryotes, but little is known about small RNA pathways in the Stramenopile kingdom. Phytophthora, a genus of filamentous oomycetes, contains many devastating plant pathogens, causing multibillion-dollar damage to crops, ornamental plants, and natural environments. The genomes of several oomycetes including Phytophthora species such as the soybean pathogen P. sojae, have been sequenced, allowing evolutionary analysis of small RNA-processing enzymes. This study examined the evolutionary origins of the oomycete small RNA-related genes Dicer-like (DCL), and RNA-dependent RNA polymerase (RDR) through broad phylogenetic analyses of the key domains. Two Dicer gene homologs, DCL1 and DCL2, and one RDR homolog were cloned and analyzed from P. sojae. Gene expression analysis revealed only minor changes in transcript levels among different life stages. Oomycete DCL1 homologs clustered with animal and plant Dicer homologs in evolutionary trees, whereas oomycete DCL2 homologs clustered basally to the tree along with Drosha homologs. Phylogenetic analysis of the RDR homologs confirmed a previous study that suggested the last common eukaryote ancestor possessed three RDR homologs, which were selectively retained or lost in later lineages. Our analysis clarifies the position of some Unikont and Chromalveolate RDR lineages within the tree, including oomycete homologs. Finally, we analyzed alterations in the domain structure of oomycete Dicer and RDR homologs, specifically focusing on the proposed domain transfer of the DEAD-box helicase domain from Dicer to RDR. Implications of the oomycete domain structure are discussed, and possible roles of the two oomycete Dicer homologs are proposed.

X Demographics

X Demographics

The data shown below were collected from the profiles of 10 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 33 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 3%
United States 1 3%
Norway 1 3%
Unknown 30 91%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 30%
Student > Master 5 15%
Student > Ph. D. Student 4 12%
Professor 2 6%
Other 2 6%
Other 1 3%
Unknown 9 27%
Readers by discipline Count As %
Agricultural and Biological Sciences 19 58%
Biochemistry, Genetics and Molecular Biology 3 9%
Unknown 11 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 March 2016.
All research outputs
#5,550,714
of 22,851,489 outputs
Outputs from Frontiers in Plant Science
#2,779
of 20,193 outputs
Outputs of similar age
#77,988
of 299,389 outputs
Outputs of similar age from Frontiers in Plant Science
#68
of 516 outputs
Altmetric has tracked 22,851,489 research outputs across all sources so far. Compared to these this one has done well and is in the 75th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 20,193 research outputs from this source. They receive a mean Attention Score of 4.0. This one has done well, scoring higher than 86% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 299,389 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 73% of its contemporaries.
We're also able to compare this research output to 516 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 86% of its contemporaries.