↓ Skip to main content

Rapid Crown Root Development Confers Tolerance to Zinc Deficiency in Rice

Overview of attention for article published in Frontiers in Plant Science, March 2016
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
23 Dimensions

Readers on

mendeley
31 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Rapid Crown Root Development Confers Tolerance to Zinc Deficiency in Rice
Published in
Frontiers in Plant Science, March 2016
DOI 10.3389/fpls.2016.00428
Pubmed ID
Authors

Amrit K Nanda, Matthias Wissuwa

Abstract

Zinc (Zn) deficiency is one of the leading nutrient disorders in rice (Oryza sativa). Many studies have identified Zn-efficient rice genotypes, but causal mechanisms for Zn deficiency tolerance remain poorly understood. Here, we report a detailed study of the impact of Zn deficiency on crown root development of rice genotypes, differing in their tolerance to this stress. Zn deficiency delayed crown root development and plant biomass accumulation in both Zn-efficient and inefficient genotypes, with the effects being much stronger in the latter. Zn-efficient genotypes had developed new crown roots as early as 3 days after transplanting (DAT) to a Zn deficient field and that was followed by a significant increase in total biomass by 7 DAT. Zn-inefficient genotypes developed few new crown roots and did not increase biomass during the first 7 days following transplanting. This correlated with Zn-efficient genotypes retranslocating a higher proportion of shoot-Zn to their roots, compared to Zn-inefficient genotypes. These latter genotypes were furthermore not efficient in utilizing the limited Zn for root development. Histological analyses indicated no anomalies in crown tissue of Zn-efficient or inefficient genotypes that would have suggested crown root emergence was impeded. We therefore conclude that the rate of crown root initiation was differentially affected by Zn deficiency between genotypes. Rapid crown root development, following transplanting, was identified as a main causative trait for tolerance to Zn deficiency and better Zn retranslocation from shoot to root was a key attribute of Zn-efficient genotypes.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 31 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
France 1 3%
Unknown 30 97%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 23%
Student > Ph. D. Student 4 13%
Student > Master 4 13%
Student > Bachelor 2 6%
Professor 1 3%
Other 3 10%
Unknown 10 32%
Readers by discipline Count As %
Agricultural and Biological Sciences 13 42%
Biochemistry, Genetics and Molecular Biology 2 6%
Business, Management and Accounting 1 3%
Philosophy 1 3%
Social Sciences 1 3%
Other 1 3%
Unknown 12 39%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 April 2016.
All research outputs
#18,449,393
of 22,858,915 outputs
Outputs from Frontiers in Plant Science
#13,790
of 20,216 outputs
Outputs of similar age
#220,314
of 301,001 outputs
Outputs of similar age from Frontiers in Plant Science
#314
of 504 outputs
Altmetric has tracked 22,858,915 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,216 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 20th percentile – i.e., 20% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 301,001 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 504 others from the same source and published within six weeks on either side of this one. This one is in the 25th percentile – i.e., 25% of its contemporaries scored the same or lower than it.