↓ Skip to main content

Cross-Regulation between N Metabolism and Nitric Oxide (NO) Signaling during Plant Immunity

Overview of attention for article published in Frontiers in Plant Science, April 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (62nd percentile)

Mentioned by

twitter
3 X users

Readers on

mendeley
100 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Cross-Regulation between N Metabolism and Nitric Oxide (NO) Signaling during Plant Immunity
Published in
Frontiers in Plant Science, April 2016
DOI 10.3389/fpls.2016.00472
Pubmed ID
Authors

Elise Thalineau, Hoai-Nam Truong, Antoine Berger, Carine Fournier, Alexandre Boscari, David Wendehenne, Sylvain Jeandroz

Abstract

Plants are sessile organisms that have evolved a complex immune system which helps them cope with pathogen attacks. However, the capacity of a plant to mobilize different defense responses is strongly affected by its physiological status. Nitrogen (N) is a major nutrient that can play an important role in plant immunity by increasing or decreasing plant resistance to pathogens. Although no general rule can be drawn about the effect of N availability and quality on the fate of plant/pathogen interactions, plants' capacity to acquire, assimilate, allocate N, and maintain amino acid homeostasis appears to partly mediate the effects of N on plant defense. Nitric oxide (NO), one of the products of N metabolism, plays an important role in plant immunity signaling. NO is generated in part through Nitrate Reductase (NR), a key enzyme involved in nitrate assimilation, and its production depends on levels of nitrate/nitrite, NR substrate/product, as well as on L-arginine and polyamine levels. Cross-regulation between NO signaling and N supply/metabolism has been evidenced. NO production can be affected by N supply, and conversely NO appears to regulate nitrate transport and assimilation. Based on this knowledge, we hypothesized that N availability partly controls plant resistance to pathogens by controlling NO homeostasis. Using the Medicago truncatula/Aphanomyces euteiches pathosystem, we showed that NO homeostasis is important for resistance to this oomycete and that N availability impacts NO homeostasis by affecting S-nitrosothiol (SNO) levels and S-nitrosoglutathione reductase activity in roots. These results could therefore explain the increased resistance we noted in N-deprived as compared to N-replete M. truncatula seedlings. They open onto new perspectives for the studies of N/plant defense interactions.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 100 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 100 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 25 25%
Researcher 13 13%
Student > Doctoral Student 9 9%
Student > Master 8 8%
Other 5 5%
Other 18 18%
Unknown 22 22%
Readers by discipline Count As %
Agricultural and Biological Sciences 47 47%
Biochemistry, Genetics and Molecular Biology 18 18%
Environmental Science 3 3%
Unspecified 1 1%
Chemical Engineering 1 1%
Other 4 4%
Unknown 26 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 April 2016.
All research outputs
#14,256,395
of 22,860,626 outputs
Outputs from Frontiers in Plant Science
#8,174
of 20,221 outputs
Outputs of similar age
#160,899
of 300,802 outputs
Outputs of similar age from Frontiers in Plant Science
#168
of 474 outputs
Altmetric has tracked 22,860,626 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,221 research outputs from this source. They receive a mean Attention Score of 4.0. This one has gotten more attention than average, scoring higher than 55% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 300,802 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 474 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 62% of its contemporaries.