↓ Skip to main content

Identification and Overexpression of a Knotted1-Like Transcription Factor in Switchgrass (Panicum virgatum L.) for Lignocellulosic Feedstock Improvement

Overview of attention for article published in Frontiers in Plant Science, April 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
35 Dimensions

Readers on

mendeley
44 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Identification and Overexpression of a Knotted1-Like Transcription Factor in Switchgrass (Panicum virgatum L.) for Lignocellulosic Feedstock Improvement
Published in
Frontiers in Plant Science, April 2016
DOI 10.3389/fpls.2016.00520
Pubmed ID
Authors

Wegi A. Wuddineh, Mitra Mazarei, Ji-Yi Zhang, Geoffrey B. Turner, Robert W. Sykes, Stephen R. Decker, Mark F. Davis, Michael K. Udvardi, C. Neal Stewart

Abstract

High biomass production and wide adaptation has made switchgrass (Panicum virgatum L.) an important candidate lignocellulosic bioenergy crop. One major limitation of this and other lignocellulosic feedstocks is the recalcitrance of complex carbohydrates to hydrolysis for conversion to biofuels. Lignin is the major contributor to recalcitrance as it limits the accessibility of cell wall carbohydrates to enzymatic breakdown into fermentable sugars. Therefore, genetic manipulation of the lignin biosynthesis pathway is one strategy to reduce recalcitrance. Here, we identified a switchgrass Knotted1 transcription factor, PvKN1, with the aim of genetically engineering switchgrass for reduced biomass recalcitrance for biofuel production. Gene expression of the endogenous PvKN1 gene was observed to be highest in young inflorescences and stems. Ectopic overexpression of PvKN1 in switchgrass altered growth, especially in early developmental stages. Transgenic lines had reduced expression of most lignin biosynthetic genes accompanied by a reduction in lignin content suggesting the involvement of PvKN1 in the broad regulation of the lignin biosynthesis pathway. Moreover, the reduced expression of the Gibberellin 20-oxidase (GA20ox) gene in tandem with the increased expression of Gibberellin 2-oxidase (GA2ox) genes in transgenic PvKN1 lines suggest that PvKN1 may exert regulatory effects via modulation of GA signaling. Furthermore, overexpression of PvKN1 altered the expression of cellulose and hemicellulose biosynthetic genes and increased sugar release efficiency in transgenic lines. Our results demonstrated that switchgrass PvKN1 is a putative ortholog of maize KN1 that is linked to plant lignification and cell wall and development traits as a major regulatory gene. Therefore, targeted overexpression of PvKN1 in bioenergy feedstocks may provide one feasible strategy for reducing biomass recalcitrance and simultaneously improving plant growth characteristics.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 44 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Unknown 43 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 23%
Researcher 9 20%
Student > Master 5 11%
Student > Bachelor 2 5%
Student > Doctoral Student 2 5%
Other 7 16%
Unknown 9 20%
Readers by discipline Count As %
Agricultural and Biological Sciences 24 55%
Biochemistry, Genetics and Molecular Biology 5 11%
Engineering 2 5%
Chemistry 2 5%
Computer Science 1 2%
Other 2 5%
Unknown 8 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 April 2016.
All research outputs
#20,322,106
of 22,865,319 outputs
Outputs from Frontiers in Plant Science
#16,130
of 20,241 outputs
Outputs of similar age
#253,374
of 299,113 outputs
Outputs of similar age from Frontiers in Plant Science
#371
of 502 outputs
Altmetric has tracked 22,865,319 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,241 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 299,113 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 502 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.