↓ Skip to main content

Inheritance of Resistance to Sorghum Shoot Fly, Atherigona soccata in Sorghum, Sorghum bicolor (L.) Moench

Overview of attention for article published in Frontiers in Plant Science, April 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Readers on

mendeley
23 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Inheritance of Resistance to Sorghum Shoot Fly, Atherigona soccata in Sorghum, Sorghum bicolor (L.) Moench
Published in
Frontiers in Plant Science, April 2016
DOI 10.3389/fpls.2016.00543
Pubmed ID
Authors

Riyazaddin Mohammed, Ashok Kumar Are, Rajendra Sudhakar Munghate, Ramaiah Bhavanasi, Kavi Kishor B. Polavarapu, Hari Chand Sharma

Abstract

Sorghum production is affected by a wide array of biotic constraints, of which sorghum shoot fly, Atherigona soccata is the most important pest, which severely damages the sorghum crop during the seedling stage. Host plant resistance is one of the major components to control sorghum shoot fly, A. soccata. To understand the nature of gene action for inheritance of shoot fly resistance, we evaluated 10 parents, 45 F1's and their reciprocals in replicated trials during the rainy and postrainy seasons. The genotypes ICSV 700, Phule Anuradha, ICSV 25019, PS 35805, IS 2123, IS 2146, and IS 18551 exhibited resistance to shoot fly damage across seasons. Crosses between susceptible parents were preferred for egg laying by the shoot fly females, resulting in a susceptible reaction. ICSV 700, ICSV 25019, PS 35805, IS 2123, IS 2146, and IS 18551 exhibited significant and negative general combining ability (gca) effects for oviposition, deadheart incidence, and overall resistance score. The plant morphological traits associated with expression of resistance/susceptibility to shoot fly damage such as leaf glossiness, plant vigor, and leafsheath pigmentation also showed significant gca effects by these genotypes, suggesting the potential for use as a selection criterion to breed for resistance to shoot fly, A. soccata. ICSV 700, Phule Anuradha, IS 2146 and IS 18551 with significant positive gca effects for trichome density can also be utilized in improving sorghums for shoot fly resistance. The parents involved in hybrids with negative specific combining ability (sca) effects for shoot fly resistance traits can be used in developing sorghum hybrids with adaptation to postrainy season. The significant reciprocal effects of combining abilities for oviposition, leaf glossy score and trichome density suggested the influence of cytoplasmic factors in inheritance of shoot fly resistance. Higher values of variance due to specific combining ability (σ(2)s), dominance variance (σ(2)d), and lower predictability ratios than the variance due to general combining ability (σ(2)g) and additive variance (σ(2)a) for shoot fly resistance traits indicated the predominance of dominance type of gene action, whereas trichome density, leaf glossy score, and plant vigor score with high σ(2)g, additive variance, predictability ratio, and the ratio of general combining ability to the specific combining ability showed predominance of additive type of gene action indicating importance of heterosis breeding followed by simple selection in breeding shoot fly-resistant sorghums. Most of the traits exhibited high broadsense heritability, indicating high inheritance of shoot fly resistance traits.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 23 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 23 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 22%
Student > Bachelor 3 13%
Student > Ph. D. Student 2 9%
Professor 1 4%
Other 1 4%
Other 2 9%
Unknown 9 39%
Readers by discipline Count As %
Agricultural and Biological Sciences 12 52%
Computer Science 1 4%
Biochemistry, Genetics and Molecular Biology 1 4%
Unknown 9 39%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 June 2016.
All research outputs
#17,799,386
of 22,865,319 outputs
Outputs from Frontiers in Plant Science
#12,063
of 20,233 outputs
Outputs of similar age
#204,940
of 299,013 outputs
Outputs of similar age from Frontiers in Plant Science
#249
of 502 outputs
Altmetric has tracked 22,865,319 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,233 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 299,013 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 502 others from the same source and published within six weeks on either side of this one. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.