↓ Skip to main content

Transcriptomic Analysis Identifies Differentially Expressed Genes (DEGs) Associated with Bolting and Flowering in Radish (Raphanus sativus L.)

Overview of attention for article published in Frontiers in Plant Science, May 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (57th percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
20 Dimensions

Readers on

mendeley
23 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Transcriptomic Analysis Identifies Differentially Expressed Genes (DEGs) Associated with Bolting and Flowering in Radish (Raphanus sativus L.)
Published in
Frontiers in Plant Science, May 2016
DOI 10.3389/fpls.2016.00682
Pubmed ID
Authors

Shanshan Nie, Chao Li, Yan Wang, Liang Xu, Everlyne M. Muleke, Mingjia Tang, Xiaochuan Sun, Liwang Liu

Abstract

The transition of vegetative growth to bolting and flowering is an important process in the life cycle of plants, which is determined by numerous genes forming an intricate network of bolting and flowering. However, no comprehensive identification and profiling of bolting and flowering-related genes have been carried out in radish. In this study, RNA-Seq technology was applied to analyze the differential gene expressions during the transition from vegetative stage to reproductive stage in radish. A total of 5922 differentially expressed genes (DEGs) including 779 up-regulated and 5143 down-regulated genes were isolated. Functional enrichment analysis suggested that some DEGs were involved in hormone signaling pathways and the transcriptional regulation of bolting and flowering. KEGG-based analysis identified 37 DEGs being involved in phytohormone signaling pathways. Moreover, 95 DEGs related to bolting and flowering were identified and integrated into various flowering pathways. Several critical genes including FT, CO, SOC1, FLC, and LFY were characterized and profiled by RT-qPCR analysis. Correlation analysis indicated that 24 miRNA-DEG pairs were involved in radish bolting and flowering. Finally, a miRNA-DEG-based schematic model of bolting and flowering regulatory network was proposed in radish. These outcomes provided significant insights into genetic control of radish bolting and flowering, and would facilitate unraveling molecular regulatory mechanism underlying bolting and flowering in root vegetable crops.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 23 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 23 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 30%
Student > Master 5 22%
Student > Doctoral Student 1 4%
Student > Bachelor 1 4%
Researcher 1 4%
Other 2 9%
Unknown 6 26%
Readers by discipline Count As %
Agricultural and Biological Sciences 14 61%
Biochemistry, Genetics and Molecular Biology 3 13%
Unknown 6 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 June 2016.
All research outputs
#14,851,946
of 22,873,031 outputs
Outputs from Frontiers in Plant Science
#9,305
of 20,257 outputs
Outputs of similar age
#198,130
of 334,086 outputs
Outputs of similar age from Frontiers in Plant Science
#187
of 519 outputs
Altmetric has tracked 22,873,031 research outputs across all sources so far. This one is in the 33rd percentile – i.e., 33% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,257 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 334,086 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 519 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 57% of its contemporaries.