↓ Skip to main content

Wheat Phenological Development and Growth Studies As Affected by Drought and Late Season High Temperature Stress under Arid Environment

Overview of attention for article published in Frontiers in Plant Science, June 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (65th percentile)

Mentioned by

twitter
3 X users
facebook
3 Facebook pages

Citations

dimensions_citation
117 Dimensions

Readers on

mendeley
167 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Wheat Phenological Development and Growth Studies As Affected by Drought and Late Season High Temperature Stress under Arid Environment
Published in
Frontiers in Plant Science, June 2016
DOI 10.3389/fpls.2016.00795
Pubmed ID
Authors

Muhammad Z. Ihsan, Fathy S. El-Nakhlawy, Saleh M. Ismail, Shah Fahad, Ihsanullah daur

Abstract

This study evaluates the potential for adaptability and tolerance of wheat genotypes (G) to an arid environment. We examined the influence of drought stress (DS) (100, 75, and 50% field capacity), planting times (PT) (16-November, 01-December, 16-December and 01-January), and G (Yocoro Rojo, FKAU-10, Faisalabad-08, and Galaxy L-7096) on phenological development, growth indices, grain yield, and water use efficiency of drip-irrigated wheat. Development measured at five phenological growth stages (GS) (tillering, jointing, booting, heading, and maturity) and growth indices 30, 45, 60, and 75 days after sowing (DAS) were also correlated with final grain yield. Tillering occurred earlier in DS plots, to a maximum of 31 days. Days to complete 50% heading and physiological crop maturity were the most susceptible GS that denoted 31-72% reduction in number of days to complete these GS at severe DS. Wheat G grown with severe DS had the shortest grain filling duration. Genotype Fsd-08 presented greater adaptability to studied arid climate and recorded 31, 35, and 38% longer grain filling period as compared with rest of the G at 100-50% field capacity respectively. December sowing mitigated the drought and delayed planting effects by producing superior growth and yield (2162 kg ha(-1)) at severe DS. Genotypes Fsd-08 and L-7096 attained the minimum plant height (36 cm) and the shortest growth cycle (76 days) for January planting with 50% field capacity. At severe DS leaf area index, dry matter accumulation, crop growth rate and net assimilation rate were decreased by 67, 57, 34, and 38% as compared to non-stressed plots. Genotypes Fsd-08 and F-10 were the superior ones and secured 14-17% higher grain yield than genotype YR for severely stressed plots. The correlation between crop growth indices and grain yield depicted the highest value (0.58-0.71) at 60-75 DAS. So the major contribution of these growth indices toward grain yield was at the start of reproductive phase. It's clear that booting and grain filling are the most sensitive GS that are severely affected by both drought and delay in planting.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 167 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Chile 1 <1%
Unknown 166 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 38 23%
Student > Master 21 13%
Student > Doctoral Student 18 11%
Researcher 17 10%
Student > Bachelor 6 4%
Other 16 10%
Unknown 51 31%
Readers by discipline Count As %
Agricultural and Biological Sciences 80 48%
Environmental Science 9 5%
Engineering 7 4%
Biochemistry, Genetics and Molecular Biology 6 4%
Pharmacology, Toxicology and Pharmaceutical Science 3 2%
Other 10 6%
Unknown 52 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 July 2016.
All research outputs
#14,265,823
of 22,876,619 outputs
Outputs from Frontiers in Plant Science
#8,188
of 20,268 outputs
Outputs of similar age
#191,871
of 340,764 outputs
Outputs of similar age from Frontiers in Plant Science
#171
of 524 outputs
Altmetric has tracked 22,876,619 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,268 research outputs from this source. They receive a mean Attention Score of 4.0. This one has gotten more attention than average, scoring higher than 55% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 340,764 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 524 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 65% of its contemporaries.