↓ Skip to main content

Seasonal Variation of Carbon Metabolism in the Cambial Zone of Eucalyptus grandis

Overview of attention for article published in Frontiers in Plant Science, June 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
44 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Seasonal Variation of Carbon Metabolism in the Cambial Zone of Eucalyptus grandis
Published in
Frontiers in Plant Science, June 2016
DOI 10.3389/fpls.2016.00932
Pubmed ID
Authors

Ilara G. F. Budzinski, David H. Moon, Pernilla Lindén, Thomas Moritz, Carlos A. Labate

Abstract

Eucalyptus species are the most widely hardwood planted in the world. It is one of the successful examples of commercial forestry plantation in Brazil and other tropical and subtropical countries. The tree is valued for its rapid growth, adaptability and wood quality. Wood formation is the result of cumulative annual activity of the vascular cambium. This cambial activity is generally related to the alternation of cold and warm, and/or dry and rainy seasons. Efforts have focused on analysis of cambial zone in response to seasonal variations in trees from temperate zones. However, little is known about the molecular changes triggered by seasonal variations in trees from tropical countries. In this work we attempted to establish a global view of seasonal alterations in the cambial zone of Eucalyptus grandis Hill ex Maiden, emphasizing changes occurring in the carbon metabolism. Using transcripts, proteomics and metabolomics we analyzed the tissues harvested in summer-wet and winter-dry seasons. Based on proteomics analysis, 70 proteins that changed in abundance were successfully identified. Transcripts for some of these proteins were analyzed and similar expression patterns were observed. We identified 19 metabolites differentially abundant. Our results suggest a differential reconfiguration of carbon partioning in E. grandis cambial zone. During summer, pyruvate is primarily metabolized via ethanolic fermentation, possibly to regenerate NAD(+) for glycolytic ATP production and cellular maintenance. However, in winter there seems to be a metabolic change and we found that some sugars were highly abundant. Our results revealed a dynamic change in E. grandis cambial zone due to seasonality and highlight the importance of glycolysis and ethanolic fermentation for energy generation and maintenance in Eucalyptus, a fast growing tree.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 44 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 44 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 9 20%
Student > Ph. D. Student 7 16%
Student > Master 5 11%
Other 4 9%
Student > Bachelor 3 7%
Other 4 9%
Unknown 12 27%
Readers by discipline Count As %
Agricultural and Biological Sciences 22 50%
Biochemistry, Genetics and Molecular Biology 2 5%
Environmental Science 1 2%
Philosophy 1 2%
Earth and Planetary Sciences 1 2%
Other 0 0%
Unknown 17 39%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 June 2016.
All research outputs
#20,334,427
of 22,879,161 outputs
Outputs from Frontiers in Plant Science
#16,165
of 20,270 outputs
Outputs of similar age
#304,488
of 351,565 outputs
Outputs of similar age from Frontiers in Plant Science
#405
of 526 outputs
Altmetric has tracked 22,879,161 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,270 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 351,565 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 526 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.