↓ Skip to main content

Physiological Mechanisms Underlying the High-Grain Yield and High-Nitrogen Use Efficiency of Elite Rice Varieties under a Low Rate of Nitrogen Application in China

Overview of attention for article published in Frontiers in Plant Science, July 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
45 Dimensions

Readers on

mendeley
61 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Physiological Mechanisms Underlying the High-Grain Yield and High-Nitrogen Use Efficiency of Elite Rice Varieties under a Low Rate of Nitrogen Application in China
Published in
Frontiers in Plant Science, July 2016
DOI 10.3389/fpls.2016.01024
Pubmed ID
Authors

Lilian Wu, Shen Yuan, Liying Huang, Fan Sun, Guanglong Zhu, Guohui Li, Shah Fahad, Shaobing Peng, Fei Wang

Abstract

Selecting rice varieties with a high nitrogen (N) use efficiency (NUE) is the best approach to reduce N fertilizer application in rice production and is one of the objectives of the Green Super Rice (GSR) Project in China. However, the performance of elite candidate GSR varieties under low N supply remains unclear. In the present study, differences in the grain yield and NUE of 13 and 14 candidate varieties with two controls were determined at a N rate of 100 kg ha(-1) in field experiments in 2014 and 2015, respectively. The grain yield for all of the rice varieties ranged from 8.67 to 11.09 t ha(-1), except for a japonica rice variety YG29, which had a grain yield of 6.42 t ha(-1). HY549 and YY4949 produced the highest grain yield, reflecting a higher biomass production and harvest index in 2014 and 2015, respectively. Total N uptake at maturity (TNPM) ranged from 144 to 210 kg ha(-1), while the nitrogen use efficiency for grain production (NUEg) ranged from 35.2 to 62.0 kg kg(-1). Both TNPM and NUEg showed a significant quadratic correlation with grain yield, indicating that it is possible to obtain high grain yield and NUEg with the reduction of TNPM. The correlation between N-related parameters and yield-related traits suggests that promoting pre-heading growth could increase TNPM, while high biomass accumulation during the grain filling period and large panicles are important for a higher NUEg. In addition, there were significant and negative correlations between the NUEg and N concentrations in leaf, stem, and grain tissues at maturity. Further improvements in NUEg require a reduction in the stem N concentration but not the leaf N concentration. The daily grain yield was the only parameter that significantly and positively correlated with both TNPMand NUEg. This study determined variations in the grain yield and NUE of elite candidate GSR rice varieties and provided plant traits that could be used as selection criteria in breeding N-efficient rice varieties.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 61 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 61 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 20 33%
Researcher 10 16%
Student > Master 4 7%
Professor 4 7%
Student > Bachelor 3 5%
Other 9 15%
Unknown 11 18%
Readers by discipline Count As %
Agricultural and Biological Sciences 39 64%
Biochemistry, Genetics and Molecular Biology 4 7%
Environmental Science 2 3%
Pharmacology, Toxicology and Pharmaceutical Science 1 2%
Unknown 15 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 July 2016.
All research outputs
#20,335,770
of 22,880,691 outputs
Outputs from Frontiers in Plant Science
#16,164
of 20,270 outputs
Outputs of similar age
#310,050
of 355,956 outputs
Outputs of similar age from Frontiers in Plant Science
#410
of 522 outputs
Altmetric has tracked 22,880,691 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,270 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 355,956 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 522 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.