↓ Skip to main content

Mycorrhizal Stimulation of Leaf Gas Exchange in Relation to Root Colonization, Shoot Size, Leaf Phosphorus and Nitrogen: A Quantitative Analysis of the Literature Using Meta-Regression

Overview of attention for article published in Frontiers in Plant Science, July 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
59 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Mycorrhizal Stimulation of Leaf Gas Exchange in Relation to Root Colonization, Shoot Size, Leaf Phosphorus and Nitrogen: A Quantitative Analysis of the Literature Using Meta-Regression
Published in
Frontiers in Plant Science, July 2016
DOI 10.3389/fpls.2016.01084
Pubmed ID
Authors

Robert M. Augé, Heather D. Toler, Arnold M. Saxton

Abstract

Arbuscular mycorrhizal (AM) symbiosis often stimulates gas exchange rates of the host plant. This may relate to mycorrhizal effects on host nutrition and growth rate, or the influence may occur independently of these. Using meta-regression, we tested the strength of the relationship between AM-induced increases in gas exchange, and AM size and leaf mineral effects across the literature. With only a few exceptions, AM stimulation of carbon exchange rate (CER), stomatal conductance (g s), and transpiration rate (E) has been significantly associated with mycorrhizal stimulation of shoot dry weight, leaf phosphorus, leaf nitrogen:phosphorus ratio, and percent root colonization. The sizeable mycorrhizal stimulation of CER, by 49% over all studies, has been about twice as large as the mycorrhizal stimulation of g s and E (28 and 26%, respectively). CER has been over twice as sensitive as g s and four times as sensitive as E to mycorrhizal colonization rates. The AM-induced stimulation of CER increased by 19% with each AM-induced doubling of shoot size; the AM effect was about half as large for g s and E. The ratio of leaf N to leaf P has been more closely associated with mycorrhizal influence on leaf gas exchange than leaf P alone. The mycorrhizal influence on CER has declined markedly over the 35 years of published investigations.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 59 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Chile 1 2%
Unknown 58 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 17%
Student > Ph. D. Student 10 17%
Student > Master 8 14%
Student > Doctoral Student 5 8%
Student > Bachelor 5 8%
Other 6 10%
Unknown 15 25%
Readers by discipline Count As %
Agricultural and Biological Sciences 32 54%
Environmental Science 4 7%
Biochemistry, Genetics and Molecular Biology 3 5%
Computer Science 2 3%
Medicine and Dentistry 1 2%
Other 0 0%
Unknown 17 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 July 2016.
All research outputs
#20,336,685
of 22,881,964 outputs
Outputs from Frontiers in Plant Science
#16,162
of 20,270 outputs
Outputs of similar age
#320,159
of 365,421 outputs
Outputs of similar age from Frontiers in Plant Science
#391
of 495 outputs
Altmetric has tracked 22,881,964 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,270 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 365,421 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 495 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.