↓ Skip to main content

Exploring New Alleles Involved in Tomato Fruit Quality in an Introgression Line Library of Solanum pimpinellifolium

Overview of attention for article published in Frontiers in Plant Science, August 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (60th percentile)

Mentioned by

twitter
4 X users

Readers on

mendeley
74 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Exploring New Alleles Involved in Tomato Fruit Quality in an Introgression Line Library of Solanum pimpinellifolium
Published in
Frontiers in Plant Science, August 2016
DOI 10.3389/fpls.2016.01172
Pubmed ID
Authors

Walter Barrantes, Gloria López-Casado, Santiago García-Martínez, Aranzazu Alonso, Fernando Rubio, Juan J. Ruiz, Rafael Fernández-Muñoz, Antonio Granell, Antonio J. Monforte

Abstract

We have studied a genomic library of introgression lines from the Solanum pimpinellifolium accession TO-937 into the genetic background of the "Moneymaker" cultivar in order to evaluate the accession's breeding potential. Overall, no deleterious phenotypes were observed, and the plants and fruits were phenotypically very similar to those of "Moneymaker," which confirms the feasibility of translating the current results into elite breeding programs. We identified chromosomal regions associated with traits that were both vegetative (plant vigor, trichome density) and fruit-related (morphology, organoleptic quality, color). A trichome-density locus was mapped on chromosome 10 that had not previously been associated with insect resistance, which indicates that the increment of trichomes by itself does not confer resistance. A large number of quantitative trait loci (QTLs) have been identified for fruit weight. Interestingly, fruit weight QTLs on chromosomes 1 and 10 showed a magnitude effect similar to that of QTLs previously defined as important in domestication and diversification. Low variability was observed for fruit-shape-related traits. We were, however, able to identify a QTL for shoulder height, although the effects were quite low, thus demonstrating the suitability of the current population for QTL detection. Regarding organoleptic traits, consistent QTLs were detected for soluble solid content (SSC). Interestingly, QTLs on chromosomes 2 and 9 increased SSC but did not affect fruit weight, making them quite promising for introduction in modern cultivars. Three ILs with introgressions on chromosomes 1, 2, and 10 increased the internal fruit color, making them candidates for increasing the color of modern cultivars. Comparing the QTL detection between this IL population and a recombinant inbred line population from the same cross, we found that QTL stability across generations depended on the trait, as it was very high for fruit weight but low for organoleptic traits. This difference in QTL stability may be due to a predominant additive gene action for QTLs involved in fruit weight, whereas epistatic and genetic background interactions are most likely important for the other traits.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 74 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Netherlands 1 1%
Unknown 73 99%

Demographic breakdown

Readers by professional status Count As %
Researcher 20 27%
Student > Ph. D. Student 12 16%
Student > Doctoral Student 8 11%
Student > Master 8 11%
Student > Bachelor 7 9%
Other 7 9%
Unknown 12 16%
Readers by discipline Count As %
Agricultural and Biological Sciences 44 59%
Biochemistry, Genetics and Molecular Biology 4 5%
Chemistry 2 3%
Economics, Econometrics and Finance 1 1%
Computer Science 1 1%
Other 2 3%
Unknown 20 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 May 2017.
All research outputs
#14,269,564
of 22,883,326 outputs
Outputs from Frontiers in Plant Science
#8,186
of 20,270 outputs
Outputs of similar age
#197,325
of 342,741 outputs
Outputs of similar age from Frontiers in Plant Science
#164
of 447 outputs
Altmetric has tracked 22,883,326 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,270 research outputs from this source. They receive a mean Attention Score of 4.0. This one has gotten more attention than average, scoring higher than 55% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 342,741 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 447 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 60% of its contemporaries.