↓ Skip to main content

Non-target Site Tolerance Mechanisms Describe Tolerance to Glyphosate in Avena sterilis

Overview of attention for article published in Frontiers in Plant Science, August 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (53rd percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
20 Dimensions

Readers on

mendeley
34 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Non-target Site Tolerance Mechanisms Describe Tolerance to Glyphosate in Avena sterilis
Published in
Frontiers in Plant Science, August 2016
DOI 10.3389/fpls.2016.01220
Pubmed ID
Authors

Pablo T. Fernández-Moreno, Ricardo Alcantara-de la Cruz, Hugo E. Cruz-Hipólito, Antonia M. Rojano-Delgado, Ilias Travlos, Rafael De Prado

Abstract

Sterile wild oat (Avena sterilis L.) is an autogamous grass established in warm climate regions. This species has been used as a cover crop in Mediterranean perennial crops during the spring period prior to initiating competition with the main crop for water and nutrients. However, such cover crops need to be controlled (by glyphosate or tillage) before the beginning of summer period (due to the possibility of intense drought stress). In 2011, the olive grove farmers of southern Spain expressed dissatisfaction because of the ineffective control with glyphosate on A. sterilis. Experiments were conducted to determine whether the continued use of glyphosate over a 5 year period had selected a new resistant or tolerant species. The GR50 values obtained for A. sterilis were 297.12 and 245.23 g ae ha(-1) for exposed (E) and un-exposed (UE) glyphosate accessions, respectively. The spray retention and shikimic acid accumulation exhibited a non-significant difference between the two accessions. The results of (14)C- glyphosate absorption was the same in the two accessions (E and UE), while the translocation from the treated leaf to the rest of the shoots and roots was similar in A. sterilis accessions. Glyphosate metabolism to aminomethylphosphonic acid (AMPA) and glyoxylate was similar in both accessions, but increased after treatment with glyphosate, indicating that metabolism plays an important role in tolerance. Both A. sterilis accessions, present similarity in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity enzyme with different glyphosate concentrations and without glyphosate, confirming that both accessions present the same genomic characteristics. The above-mentioned results indicate that innate tolerance to glyphosate in A. sterilis is probably and partly due to reduced herbicide absorption and translocation and metabolism compared to the susceptibility of other grasses weeds like Chloris inflata, Eleusine indica, and Lolium rigidum.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 34 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Greece 1 3%
Unknown 33 97%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 29%
Student > Master 5 15%
Student > Bachelor 3 9%
Student > Ph. D. Student 3 9%
Professor 2 6%
Other 3 9%
Unknown 8 24%
Readers by discipline Count As %
Agricultural and Biological Sciences 21 62%
Biochemistry, Genetics and Molecular Biology 1 3%
Psychology 1 3%
Unknown 11 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 August 2016.
All research outputs
#14,858,030
of 22,882,389 outputs
Outputs from Frontiers in Plant Science
#9,308
of 20,270 outputs
Outputs of similar age
#218,454
of 355,872 outputs
Outputs of similar age from Frontiers in Plant Science
#185
of 452 outputs
Altmetric has tracked 22,882,389 research outputs across all sources so far. This one is in the 33rd percentile – i.e., 33% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,270 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 355,872 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 452 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.