↓ Skip to main content

In silico Transcriptional Regulatory Networks Involved in Tomato Fruit Ripening

Overview of attention for article published in Frontiers in Plant Science, August 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users
facebook
2 Facebook pages

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
44 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
In silico Transcriptional Regulatory Networks Involved in Tomato Fruit Ripening
Published in
Frontiers in Plant Science, August 2016
DOI 10.3389/fpls.2016.01234
Pubmed ID
Authors

Stilianos Arhondakis, Craita E. Bita, Andreas Perrakis, Maria E. Manioudaki, Afroditi Krokida, Dimitrios Kaloudas, Panagiotis Kalaitzis

Abstract

Tomato fruit ripening is a complex developmental programme partly mediated by transcriptional regulatory networks. Several transcription factors (TFs) which are members of gene families such as MADS-box and ERF were shown to play a significant role in ripening through interconnections into an intricate network. The accumulation of large datasets of expression profiles corresponding to different stages of tomato fruit ripening and the availability of bioinformatics tools for their analysis provide an opportunity to identify TFs which might regulate gene clusters with similar co-expression patterns. We identified two TFs, a SlWRKY22-like and a SlER24 transcriptional activator which were shown to regulate modules by using the LeMoNe algorithm for the analysis of our microarray datasets representing four stages of fruit ripening, breaker, turning, pink and red ripe. The WRKY22-like module comprised a subgroup of six various calcium sensing transcripts with similar to the TF expression patterns according to real time PCR validation. A promoter motif search identified a cis acting element, the W-box, recognized by WRKY TFs that was present in the promoter region of all six calcium sensing genes. Moreover, publicly available microarray datasets of similar ripening stages were also analyzed with LeMoNe resulting in TFs such as SlERF.E1, SlERF.C1, SlERF.B2, SLERF.A2, SlWRKY24, SLWRKY37, and MADS-box/TM29 which might also play an important role in regulation of ripening. These results suggest that the SlWRKY22-like might be involved in the coordinated regulation of expression of the six calcium sensing genes. Conclusively the LeMoNe tool might lead to the identification of putative TF targets for further physiological analysis as regulators of tomato fruit ripening.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 44 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Netherlands 1 2%
Unknown 43 98%

Demographic breakdown

Readers by professional status Count As %
Student > Master 8 18%
Researcher 8 18%
Student > Ph. D. Student 8 18%
Student > Doctoral Student 5 11%
Student > Bachelor 2 5%
Other 3 7%
Unknown 10 23%
Readers by discipline Count As %
Agricultural and Biological Sciences 22 50%
Biochemistry, Genetics and Molecular Biology 6 14%
Mathematics 1 2%
Social Sciences 1 2%
Chemistry 1 2%
Other 1 2%
Unknown 12 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 September 2016.
All research outputs
#15,383,207
of 22,886,568 outputs
Outputs from Frontiers in Plant Science
#10,907
of 20,283 outputs
Outputs of similar age
#215,009
of 336,871 outputs
Outputs of similar age from Frontiers in Plant Science
#200
of 429 outputs
Altmetric has tracked 22,886,568 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,283 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 40th percentile – i.e., 40% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 336,871 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 429 others from the same source and published within six weeks on either side of this one. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.