↓ Skip to main content

Genome-Wide SNP Linkage Mapping and QTL Analysis for Fiber Quality and Yield Traits in the Upland Cotton Recombinant Inbred Lines Population

Overview of attention for article published in Frontiers in Plant Science, September 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
69 Dimensions

Readers on

mendeley
34 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genome-Wide SNP Linkage Mapping and QTL Analysis for Fiber Quality and Yield Traits in the Upland Cotton Recombinant Inbred Lines Population
Published in
Frontiers in Plant Science, September 2016
DOI 10.3389/fpls.2016.01356
Pubmed ID
Authors

Cong Li, Yating Dong, Tianlun Zhao, Ling Li, Cheng Li, En Yu, Lei Mei, M. K. Daud, Qiuling He, Jinhong Chen, Shuijin Zhu

Abstract

It is of significance to discover genes related to fiber quality and yield traits and tightly linked markers for marker-assisted selection (MAS) in cotton breeding. In this study, 188 F8 recombinant inbred lines (RILs), derived from a intraspecific cross between HS46 and MARCABUCAG8US-1-88 were genotyped by the cotton 63K single nucleotide polymorphism (SNP) assay. Field trials were conducted in Sanya, Hainan Province, during the 2014-2015 cropping seasons under standard conditions. Results revealed significant differences (P < 0.05) among RILs, environments and replications for fiber quality and yield traits. Broad-sense heritabilities of all traits including fiber length, fiber uniformity, micronaire, fiber elongation, fiber strength, boll weight, and lint percentage ranged from 0.26 to 0.66. A 1784.28 cM (centimorgans) linkage map, harboring 2618 polymorphic SNP markers, was constructed, which had 0.68 cM per marker density. Seventy-one quantitative trait locus (QTLs) for fiber quality and yield traits were detected on 21 chromosomes, explaining 4.70∼32.28% phenotypic variance, in which 16 were identified as stable QTLs across two environments. Meanwhile, 12 certain regions were investigated to be involved in the control of one (hotspot) or more (cluster) traits, mainly focused on Chr05, Chr09, Chr10, Chr14, Chr19, and Chr20. Nineteen pairs of epistatic QTLs (e-QTLs) were identified, of which two pairs involved in two additive QTLs. These additive QTLs, e-QTLs, and QTL clusters were tightly linked to SNP markers, which may serve as target regions for map-based cloning, gene discovery, and MAS in cotton breeding.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 34 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 34 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 8 24%
Researcher 6 18%
Student > Ph. D. Student 5 15%
Student > Bachelor 2 6%
Professor 1 3%
Other 2 6%
Unknown 10 29%
Readers by discipline Count As %
Agricultural and Biological Sciences 19 56%
Biochemistry, Genetics and Molecular Biology 3 9%
Medicine and Dentistry 1 3%
Unknown 11 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 September 2016.
All research outputs
#20,340,423
of 22,886,568 outputs
Outputs from Frontiers in Plant Science
#16,174
of 20,283 outputs
Outputs of similar age
#289,782
of 332,538 outputs
Outputs of similar age from Frontiers in Plant Science
#317
of 433 outputs
Altmetric has tracked 22,886,568 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,283 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 332,538 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 433 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.