↓ Skip to main content

Nickel Availability in Soil as Influenced by Liming and Its Role in Soybean Nitrogen Metabolism

Overview of attention for article published in Frontiers in Plant Science, September 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
45 Dimensions

Readers on

mendeley
54 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Nickel Availability in Soil as Influenced by Liming and Its Role in Soybean Nitrogen Metabolism
Published in
Frontiers in Plant Science, September 2016
DOI 10.3389/fpls.2016.01358
Pubmed ID
Authors

Fernando G. de Macedo, Joana D. Bresolin, Elcio F. Santos, Felipe Furlan, Wilson T. Lopes da Silva, Joe C. Polacco, José Lavres

Abstract

Nickel (Ni) availability in soil varies as a function of pH. Plants require Ni in small quantities for normal development, especially in legumes due its role in nitrogen (N) metabolism. This study investigated the effect of soil base saturation, and Ni amendments on Ni uptake, N accumulation in the leaves and grains, as well as to evaluate organic acids changes in soybean. In addition, two N assimilation enzymes were assayed: nitrate reductase (NR) and Ni-dependent urease. Soybean plants inoculated with Bradyrhizobium japonicum were cultivated in soil-filled pots under two base-cation saturation (BCS) ratios (50 and 70%) and five Ni rates - 0.0; 0.1; 0.5; 1.0; and 10.0 mg dm(-3) Ni. At flowering (R1 developmental stage), plants for each condition were evaluated for organic acids (oxalic, malonic, succinic, malic, tartaric, fumaric, oxaloacetic, citric and lactic) levels as well as the activities of urease and NR. At the end of the growth period (R7 developmental stage - grain maturity), grain N and Ni accumulations were determined. The available soil-Ni in rhizosphere extracted by DTPA increased with Ni rates, notably in BCS50. The highest concentrations of organic acid and N occurred in BCS70 and 0.5 mg dm(-3) of Ni. There were no significant differences for urease activity taken on plants grown at BSC50 for Ni rates, except for the control treatment, while plants cultivated at soil BCS70 increased the urease activity up to 0.5 mg dm(-3) of Ni. In addition, the highest values for urease activities were reached from the 0.5 mg dm(-3) of Ni rate for both BCS treatments. The NR activity was not affected by any treatment indicating good biological nitrogen fixation (BNF) for all plants. The reddish color of the nodules increased with Ni rates in both BCS50 and 70, also confirms the good BNF due to Ni availability. The optimal development of soybean occurs in BCS70, but requires an extra Ni supply for the production of organic acids and for increased N-shoot and grain accumulation.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 54 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Brazil 1 2%
Unknown 53 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 19%
Student > Master 6 11%
Student > Doctoral Student 5 9%
Student > Bachelor 3 6%
Other 2 4%
Other 7 13%
Unknown 21 39%
Readers by discipline Count As %
Agricultural and Biological Sciences 18 33%
Environmental Science 5 9%
Medicine and Dentistry 2 4%
Immunology and Microbiology 2 4%
Biochemistry, Genetics and Molecular Biology 1 2%
Other 2 4%
Unknown 24 44%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 September 2016.
All research outputs
#20,340,423
of 22,886,568 outputs
Outputs from Frontiers in Plant Science
#16,174
of 20,283 outputs
Outputs of similar age
#289,782
of 332,538 outputs
Outputs of similar age from Frontiers in Plant Science
#317
of 433 outputs
Altmetric has tracked 22,886,568 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,283 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 332,538 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 433 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.