↓ Skip to main content

Impact of Phenylpropanoid Compounds on Heat Stress Tolerance in Carrot Cell Cultures

Overview of attention for article published in Frontiers in Plant Science, September 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
49 Dimensions

Readers on

mendeley
53 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Impact of Phenylpropanoid Compounds on Heat Stress Tolerance in Carrot Cell Cultures
Published in
Frontiers in Plant Science, September 2016
DOI 10.3389/fpls.2016.01439
Pubmed ID
Authors

Mauro Commisso, Ketti Toffali, Pamela Strazzer, Matteo Stocchero, Stefania Ceoldo, Barbara Baldan, Marisa Levi, Flavia Guzzo

Abstract

The phenylpropanoid and flavonoid families include thousands of specialized metabolites that influence a wide range of processes in plants, including seed dispersal, auxin transport, photoprotection, mechanical support and protection against insect herbivory. Such metabolites play a key role in the protection of plants against abiotic stress, in many cases through their well-known ability to inhibit the formation of reactive oxygen species (ROS). However, the precise role of specific phenylpropanoid and flavonoid molecules is unclear. We therefore investigated the role of specific anthocyanins (ACs) and other phenylpropanoids that accumulate in carrot cells cultivated in vitro, focusing on their supposed ability to protect cells from heat stress. First we characterized the effects of heat stress to identify quantifiable morphological traits as markers of heat stress susceptibility. We then fed the cultures with precursors to induce the targeted accumulation of specific compounds, and compared the impact of heat stress in these cultures and unfed controls. Data modeling based on projection to latent structures (PLS) regression revealed that metabolites containing coumaric or caffeic acid, including ACs, correlate with less heat damage. Further experiments suggested that one of the cellular targets damaged by heat stress and protected by these metabolites is the actin microfilament cytoskeleton.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 53 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 53 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 25%
Researcher 7 13%
Other 3 6%
Student > Master 3 6%
Student > Doctoral Student 2 4%
Other 8 15%
Unknown 17 32%
Readers by discipline Count As %
Agricultural and Biological Sciences 19 36%
Biochemistry, Genetics and Molecular Biology 4 8%
Environmental Science 3 6%
Chemistry 3 6%
Business, Management and Accounting 1 2%
Other 0 0%
Unknown 23 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 July 2020.
All research outputs
#17,817,005
of 22,889,074 outputs
Outputs from Frontiers in Plant Science
#12,089
of 20,291 outputs
Outputs of similar age
#230,123
of 321,010 outputs
Outputs of similar age from Frontiers in Plant Science
#214
of 409 outputs
Altmetric has tracked 22,889,074 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,291 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 321,010 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 24th percentile – i.e., 24% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 409 others from the same source and published within six weeks on either side of this one. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.