↓ Skip to main content

Differential Metabolic Rearrangements after Cold Storage Are Correlated with Chilling Injury Resistance of Peach Fruits

Overview of attention for article published in Frontiers in Plant Science, September 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
61 Dimensions

Readers on

mendeley
69 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Differential Metabolic Rearrangements after Cold Storage Are Correlated with Chilling Injury Resistance of Peach Fruits
Published in
Frontiers in Plant Science, September 2016
DOI 10.3389/fpls.2016.01478
Pubmed ID
Authors

Claudia A. Bustamante, Laura L. Monti, Julieta Gabilondo, Federico Scossa, Gabriel Valentini, Claudio O. Budde, María V. Lara, Alisdair R. Fernie, María F. Drincovich

Abstract

Reconfiguration of the metabolome is a key component involved in the acclimation to cold in plants; however, few studies have been devoted to the analysis of the overall metabolite changes after cold storage of fruits prior to consumption. Here, metabolite profiling of six peach varieties with differential susceptibility to develop mealiness, a chilling-injury (CI) symptom, was performed. According to metabolic content at harvest; after cold treatment; and after ripening, either following cold treatment or not; peach fruits clustered in distinct groups, depending on harvest-time, cold treatment, and ripening state. Both common and distinct metabolic responses among the six varieties were found; common changes including dramatic galactinol and raffinose rise; GABA, Asp, and Phe increase; and 2-oxo-glutarate and succinate decrease. Raffinose content after long cold treatment quantitatively correlated to the degree of mealiness resistance of the different peach varieties; and thus, raffinose emerges as a candidate biomarker of this CI disorder. Xylose increase after cold treatment was found only in the susceptible genotypes, indicating a particular cell wall reconfiguration of these varieties while being cold-stored. Overall, results indicate that peach fruit differential metabolic rearrangements due to cold treatment, rather than differential metabolic priming before cold, are better related with CI resistance. The plasticity of peach fruit metabolism renders it possible to induce a diverse metabolite array after cold, which is successful, in some genotypes, to avoid CI.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 69 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 69 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 17%
Researcher 12 17%
Student > Master 8 12%
Student > Doctoral Student 5 7%
Student > Bachelor 4 6%
Other 11 16%
Unknown 17 25%
Readers by discipline Count As %
Agricultural and Biological Sciences 33 48%
Biochemistry, Genetics and Molecular Biology 13 19%
Engineering 2 3%
Social Sciences 1 1%
Unknown 20 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 October 2016.
All research outputs
#20,344,065
of 22,890,496 outputs
Outputs from Frontiers in Plant Science
#16,186
of 20,299 outputs
Outputs of similar age
#279,615
of 322,482 outputs
Outputs of similar age from Frontiers in Plant Science
#281
of 391 outputs
Altmetric has tracked 22,890,496 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,299 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 322,482 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 391 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.