↓ Skip to main content

High-Throughput Sequencing Reveals H2O2 Stress-Associated MicroRNAs and a Potential Regulatory Network in Brachypodium distachyon Seedlings

Overview of attention for article published in Frontiers in Plant Science, October 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (57th percentile)

Mentioned by

twitter
3 X users

Readers on

mendeley
26 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
High-Throughput Sequencing Reveals H2O2 Stress-Associated MicroRNAs and a Potential Regulatory Network in Brachypodium distachyon Seedlings
Published in
Frontiers in Plant Science, October 2016
DOI 10.3389/fpls.2016.01567
Pubmed ID
Authors

Dong-Wen Lv, Shoumin Zhen, Geng-Rui Zhu, Yan-Wei Bian, Guan-Xing Chen, Cai-Xia Han, Zi-Tong Yu, Yue-Ming Yan

Abstract

Oxidative stress in plants can be triggered by many environmental stress factors, such as drought and salinity. Brachypodium distachyon is a model organism for the study of biofuel plants and crops, such as wheat. Although recent studies have found many oxidative stress response-related proteins, the mechanism of microRNA (miRNA)-mediated oxidative stress response is still unclear. Using next generation high-throughput sequencing technology, the small RNAs were sequenced from the model plant B. distachyon 21 (Bd21) under H2O2 stress and normal growth conditions. In total, 144 known B. distachyon miRNAs and 221 potential new miRNAs were identified. Further analysis of potential new miRNAs suggested that 36 could be clustered into known miRNA families, while the remaining 185 were identified as B. distachyon-specific new miRNAs. Differential analysis of miRNAs from the normal and H2O2 stress libraries identified 31 known and 30 new H2O2 stress responsive miRNAs. The expression patterns of seven representative miRNAs were verified by reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis, which produced results consistent with those of the deep sequencing method. Moreover, we also performed RT-qPCR analysis to verify the expression levels of 13 target genes and the cleavage site of 5 target genes by known or novel miRNAs were validated experimentally by 5' RACE. Additionally, a miRNA-mediated gene regulatory network for H2O2 stress response was constructed. Our study identifies a set of H2O2-responsive miRNAs and their target genes and reveals the mechanism of oxidative stress response and defense at the post-transcriptional regulatory level.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 26 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 26 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 35%
Researcher 3 12%
Student > Doctoral Student 2 8%
Student > Bachelor 1 4%
Student > Master 1 4%
Other 3 12%
Unknown 7 27%
Readers by discipline Count As %
Agricultural and Biological Sciences 13 50%
Biochemistry, Genetics and Molecular Biology 4 15%
Medicine and Dentistry 1 4%
Unknown 8 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 October 2016.
All research outputs
#14,867,424
of 22,896,955 outputs
Outputs from Frontiers in Plant Science
#9,320
of 20,304 outputs
Outputs of similar age
#189,330
of 315,898 outputs
Outputs of similar age from Frontiers in Plant Science
#145
of 390 outputs
Altmetric has tracked 22,896,955 research outputs across all sources so far. This one is in the 33rd percentile – i.e., 33% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,304 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 315,898 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 390 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 57% of its contemporaries.