↓ Skip to main content

Wood Cellular Dendroclimatology: Testing New Proxies in Great Basin Bristlecone Pine

Overview of attention for article published in Frontiers in Plant Science, October 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
40 Dimensions

Readers on

mendeley
72 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Wood Cellular Dendroclimatology: Testing New Proxies in Great Basin Bristlecone Pine
Published in
Frontiers in Plant Science, October 2016
DOI 10.3389/fpls.2016.01602
Pubmed ID
Authors

Emanuele Ziaco, Franco Biondi, Ingo Heinrich

Abstract

Dendroclimatic proxies can be generated from the analysis of wood cellular structures, allowing for a more complete understanding of the physiological mechanisms that control the climatic response of tree species. Century-long (1870-2013) time series of anatomical parameters were developed for Great Basin bristlecone pine (Pinus longaeva D.K. Bailey) by capturing strongly contrasted microscopic images through a Confocal Laser Scanning Microscope. Environmental information embedded in wood anatomical series was analyzed in comparison with ring-width series using measures of empirical signal strength. Response functions were calculated against monthly climatic variables to evaluate climate sensitivity of cellular features (e.g., lumen area; lumen diameter) for the period 1950-2013. Calibration-verification tests were used to determine the potential to generate long climate reconstructions from these anatomical proxies. A total of eight tree-ring parameters (two ring-width and six chronologies of xylem anatomical parameters) were analyzed. Synchronous variability among samples varied among tree-ring parameters, usually decreasing from ring-width to anatomical features. Cellular parameters linked to plant hydraulic performance (e.g., tracheid lumen area and radial lumen diameter) showed empirical signal strength similar to ring-width series, while noise was predominant in chronologies of lumen tangential width and cell wall thickness. Climatic signals were different between anatomical and ring-width chronologies, revealing a positive and temporally stable correlation of tracheid size (i.e., lumen and cell diameter) with monthly (i.e., March) and seasonal precipitation. In particular, tracheid lumen diameter emerged as a reliable moisture indicator and was then used to reconstruct total March-August precipitation from 1870 to 2013. Wood anatomy holds great potential to refine and expand dendroclimatic records by allowing estimates of plant physiological adaptations to external stressors. Integrating xylem cellular features with ring-width chronologies can widen our understanding of past climatic variability (including annual extreme events) and improve the evaluation of long-term plant response to drought, especially in connection with future warming scenarios.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 72 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Brazil 1 1%
Unknown 71 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 16 22%
Researcher 15 21%
Student > Master 11 15%
Student > Bachelor 4 6%
Student > Doctoral Student 3 4%
Other 9 13%
Unknown 14 19%
Readers by discipline Count As %
Environmental Science 23 32%
Agricultural and Biological Sciences 20 28%
Earth and Planetary Sciences 6 8%
Biochemistry, Genetics and Molecular Biology 1 1%
Mathematics 1 1%
Other 4 6%
Unknown 17 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 October 2016.
All research outputs
#20,349,664
of 22,896,955 outputs
Outputs from Frontiers in Plant Science
#16,199
of 20,310 outputs
Outputs of similar age
#271,350
of 313,870 outputs
Outputs of similar age from Frontiers in Plant Science
#294
of 416 outputs
Altmetric has tracked 22,896,955 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,310 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 313,870 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 416 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.