↓ Skip to main content

Genomic Tools in Pearl Millet Breeding for Drought Tolerance: Status and Prospects

Overview of attention for article published in Frontiers in Plant Science, November 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
101 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genomic Tools in Pearl Millet Breeding for Drought Tolerance: Status and Prospects
Published in
Frontiers in Plant Science, November 2016
DOI 10.3389/fpls.2016.01724
Pubmed ID
Authors

Desalegn D. Serba, Rattan S. Yadav

Abstract

Pearl millet [Penisetum glaucum (L) R. Br.] is a hardy cereal crop grown in the arid and semiarid tropics where other cereals are likely to fail to produce economic yields due to drought and heat stresses. Adaptive evolution, a form of natural selection shaped the crop to grow and yield satisfactorily with limited moisture supply or under periodic water deficits in the soil. Drought tolerance is a complex polygenic trait that various morphological and physiological responses are controlled by 100s of genes and significantly influenced by the environment. The development of genomic tools will have enormous potential to improve the efficiency and precision of conventional breeding. The apparent independent domestication events, highly outcrossing nature and traditional cultivation in stressful environments maintained tremendous amount of polymorphism in pearl millet. This high polymorphism of the crop has been revealed by genome mapping that in turn stimulated the mapping and tagging of genomic regions controlling important traits such as drought tolerance. Mapping of a major QTL for terminal drought tolerance in independent populations envisaged the prospect for the development of molecular breeding in pearl millet. To accelerate genetic gains for drought tolerance targeted novel approaches such as establishment of marker-trait associations, genomic selection tools, genome sequence and genotyping-by-sequencing are still limited. Development and application of high throughput genomic tools need to be intensified to improve the breeding efficiency of pearl millet to minimize the impact of climate change on its production.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 101 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 101 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 26 26%
Researcher 15 15%
Student > Doctoral Student 11 11%
Student > Master 10 10%
Student > Bachelor 4 4%
Other 6 6%
Unknown 29 29%
Readers by discipline Count As %
Agricultural and Biological Sciences 52 51%
Biochemistry, Genetics and Molecular Biology 5 5%
Medicine and Dentistry 3 3%
Engineering 2 2%
Social Sciences 2 2%
Other 5 5%
Unknown 32 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 November 2016.
All research outputs
#20,355,479
of 22,903,988 outputs
Outputs from Frontiers in Plant Science
#16,218
of 20,322 outputs
Outputs of similar age
#348,883
of 415,136 outputs
Outputs of similar age from Frontiers in Plant Science
#347
of 469 outputs
Altmetric has tracked 22,903,988 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,322 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 415,136 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 469 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.