↓ Skip to main content

Methodology for High-Throughput Field Phenotyping of Canopy Temperature Using Airborne Thermography

Overview of attention for article published in Frontiers in Plant Science, December 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
121 Dimensions

Readers on

mendeley
151 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Methodology for High-Throughput Field Phenotyping of Canopy Temperature Using Airborne Thermography
Published in
Frontiers in Plant Science, December 2016
DOI 10.3389/fpls.2016.01808
Pubmed ID
Authors

David M. Deery, Greg J. Rebetzke, Jose A. Jimenez-Berni, Richard A. James, Anthony G. Condon, William D. Bovill, Paul Hutchinson, Jamie Scarrow, Robert Davy, Robert T. Furbank

Abstract

Lower canopy temperature (CT), resulting from increased stomatal conductance, has been associated with increased yield in wheat. Historically, CT has been measured with hand-held infrared thermometers. Using the hand-held CT method on large field trials is problematic, mostly because measurements are confounded by temporal weather changes during the time required to measure all plots. The hand-held CT method is laborious and yet the resulting heritability low, thereby reducing confidence in selection in large scale breeding endeavors. We have developed a reliable and scalable crop phenotyping method for assessing CT in large field experiments. The method involves airborne thermography from a manned helicopter using a radiometrically-calibrated thermal camera. Thermal image data is acquired from large experiments in the order of seconds, thereby enabling simultaneous measurement of CT on potentially 1000s of plots. Effects of temporal weather variation when phenotyping large experiments using hand-held infrared thermometers are therefore reduced. The method is designed for cost-effective and large-scale use by the non-technical user and includes custom-developed software for data processing to obtain CT data on a single-plot basis for analysis. Broad-sense heritability was routinely >0.50, and as high as 0.79, for airborne thermography CT measured near anthesis on a wheat experiment comprising 768 plots of size 2 × 6 m. Image analysis based on the frequency distribution of temperature pixels to remove the possible influence of background soil did not improve broad-sense heritability. Total image acquisition and processing time was ca. 25 min and required only one person (excluding the helicopter pilot). The results indicate the potential to phenotype CT on large populations in genetics studies or for selection within a plant breeding program.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 151 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 151 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 30 20%
Student > Ph. D. Student 28 19%
Student > Master 22 15%
Student > Bachelor 12 8%
Student > Doctoral Student 10 7%
Other 14 9%
Unknown 35 23%
Readers by discipline Count As %
Agricultural and Biological Sciences 75 50%
Engineering 6 4%
Environmental Science 5 3%
Computer Science 4 3%
Earth and Planetary Sciences 4 3%
Other 10 7%
Unknown 47 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 August 2018.
All research outputs
#15,867,545
of 23,577,761 outputs
Outputs from Frontiers in Plant Science
#11,545
of 21,632 outputs
Outputs of similar age
#257,767
of 423,116 outputs
Outputs of similar age from Frontiers in Plant Science
#248
of 488 outputs
Altmetric has tracked 23,577,761 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 21,632 research outputs from this source. They receive a mean Attention Score of 3.9. This one is in the 40th percentile – i.e., 40% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 423,116 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 488 others from the same source and published within six weeks on either side of this one. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.