↓ Skip to main content

Paxillus involutus-Facilitated Cd2+ Influx through Plasma Membrane Ca2+-Permeable Channels Is Stimulated by H2O2 and H+-ATPase in Ectomycorrhizal Populus × canescens under Cadmium Stress

Overview of attention for article published in Frontiers in Plant Science, January 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
34 Dimensions

Readers on

mendeley
27 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Paxillus involutus-Facilitated Cd2+ Influx through Plasma Membrane Ca2+-Permeable Channels Is Stimulated by H2O2 and H+-ATPase in Ectomycorrhizal Populus × canescens under Cadmium Stress
Published in
Frontiers in Plant Science, January 2017
DOI 10.3389/fpls.2016.01975
Pubmed ID
Authors

Yuhong Zhang, Gang Sa, Yinan Zhang, Zhimei Zhu, Shurong Deng, Jian Sun, Nianfei Li, Jing Li, Jun Yao, Nan Zhao, Rui Zhao, Xujun Ma, Andrea Polle, Shaoliang Chen

Abstract

Using a Non-invasive Micro-test Technique, flux profiles of Cd(2+), Ca(2+), and H(+) were investigated in axenically grown cultures of two strains of Paxillus involutus (MAJ and NAU), ectomycorrhizae formed by these fungi with the woody Cd(2+)-hyperaccumulator, Populus × canescens, and non-mycorrhizal (NM) roots. The influx of Cd(2+) increased in fungal mycelia, NM and ectomycorrhizal (EM) roots upon a 40-min shock, after short-term (ST, 24 h), or long-term (LT, 7 days) exposure to a hydroponic environment of 50 μM CdCl2. Cd(2+) treatments (shock, ST, and LT) decreased Ca(2+) influx in NM and EM roots but led to an enhanced influx of Ca(2+) in axenically grown EM cultures of the two P. involutus isolates. The susceptibility of Cd(2+) flux to typical Ca(2+) channel blockers (LaCl3, GdCl3, verapamil, and TEA) in fungal mycelia and poplar roots indicated that the Cd(2+) entry occurred mainly through Ca(2+)-permeable channels in the plasma membrane (PM). Cd(2+) treatment resulted in H2O2 production. H2O2 exposure accelerated the entry of Cd(2+) and Ca(2+) in NM and EM roots. Cd(2+) further stimulated H(+) pumping activity benefiting NM and EM roots to maintain an acidic environment, which favored the entry of Cd(2+) across the PM. A scavenger of reactive oxygen species, DMTU, and an inhibitor of PM H(+)-ATPase, orthovanadate, decreased Ca(2+) and Cd(2+) influx in NM and EM roots, suggesting that the entry of Cd(2+) through Ca(2+)-permeable channels is stimulated by H2O2 and H(+) pumps. Compared to NM roots, EM roots exhibited higher Cd(2+)-fluxes under shock, ST, and LT Cd(2+) treatments. We conclude that ectomycorrhizal P. × canescens roots retained a pronounced H2O2 production and a high H(+)-pumping activity, which activated PM Ca(2+) channels and thus facilitated a high influx of Cd(2+) under Cd(2+) stress.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 27 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 27 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 11%
Researcher 3 11%
Student > Doctoral Student 3 11%
Student > Master 3 11%
Student > Bachelor 2 7%
Other 5 19%
Unknown 8 30%
Readers by discipline Count As %
Agricultural and Biological Sciences 9 33%
Computer Science 2 7%
Engineering 2 7%
Environmental Science 1 4%
Business, Management and Accounting 1 4%
Other 3 11%
Unknown 9 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 January 2017.
All research outputs
#20,397,576
of 22,947,506 outputs
Outputs from Frontiers in Plant Science
#16,263
of 20,373 outputs
Outputs of similar age
#355,704
of 420,606 outputs
Outputs of similar age from Frontiers in Plant Science
#401
of 539 outputs
Altmetric has tracked 22,947,506 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,373 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 420,606 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 539 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.