↓ Skip to main content

Stability of Cell Wall Composition and Saccharification Efficiency in Miscanthus across Diverse Environments

Overview of attention for article published in Frontiers in Plant Science, January 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
25 Dimensions

Readers on

mendeley
38 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Stability of Cell Wall Composition and Saccharification Efficiency in Miscanthus across Diverse Environments
Published in
Frontiers in Plant Science, January 2017
DOI 10.3389/fpls.2016.02004
Pubmed ID
Authors

Tim van der Weijde, Oene Dolstra, Richard G. F. Visser, Luisa M. Trindade

Abstract

To investigate the potential effects of differences between growth locations on the cell wall composition and saccharification efficiency of the bioenergy crop miscanthus, a diverse set of 15 accessions were evaluated in six locations across Europe for the first 3 years following establishment. High-throughput quantification of cellulose, hemicellulose and lignin contents, as well as cellulose and hemicellulose conversion rates was achieved by combining near-infrared reflectance spectroscopy (NIRS) and biochemical analysis. Prediction models were developed and found to predict biomass quality characteristics with high accuracy. Location significantly affected biomass quality characteristics in all three cultivation years, but location-based differences decreased toward the third year as the plants reached maturity and the effect of location-dependent differences in the rate of establishment reduced. In all locations extensive variation in accession performance was observed for quality traits. The performance of the different accessions in the second and third cultivation year was strongly correlated, while accession performance in the first cultivation year did not correlate well with performance in later years. Significant genotype-by-environment (G × E) interactions were observed for most traits, revealing differences between accessions in environmental sensitivity. Stability analysis of accession performance for calculated ethanol yields suggested that selection for good and stable performance is a viable approach. Environmental influence on biomass quality is substantial and should be taken into account in order to match genotype, location and end-use of miscanthus as a lignocellulose feedstock.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 38 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Netherlands 1 3%
Unknown 37 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 21%
Student > Master 6 16%
Student > Doctoral Student 5 13%
Researcher 3 8%
Student > Bachelor 2 5%
Other 3 8%
Unknown 11 29%
Readers by discipline Count As %
Agricultural and Biological Sciences 14 37%
Biochemistry, Genetics and Molecular Biology 8 21%
Arts and Humanities 2 5%
Business, Management and Accounting 1 3%
Environmental Science 1 3%
Other 0 0%
Unknown 12 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 June 2017.
All research outputs
#14,914,220
of 22,947,506 outputs
Outputs from Frontiers in Plant Science
#9,344
of 20,366 outputs
Outputs of similar age
#242,926
of 421,054 outputs
Outputs of similar age from Frontiers in Plant Science
#239
of 539 outputs
Altmetric has tracked 22,947,506 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,366 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 421,054 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 539 others from the same source and published within six weeks on either side of this one. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.