↓ Skip to main content

Expression Pattern of ERF Gene Family under Multiple Abiotic Stresses in Populus simonii × P. nigra

Overview of attention for article published in Frontiers in Plant Science, February 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
24 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Expression Pattern of ERF Gene Family under Multiple Abiotic Stresses in Populus simonii × P. nigra
Published in
Frontiers in Plant Science, February 2017
DOI 10.3389/fpls.2017.00181
Pubmed ID
Authors

Wenjing Yao, Xuemei Zhang, Boru Zhou, Kai Zhao, Renhua Li, Tingbo Jiang

Abstract

Identification of gene expression patterns of key genes across multiple abiotic stresses is critical for mechanistic understanding of stress resistance in plant. In the present study, we identified differentially expressed genes (DEGs) in di-haploid Populus simonii × P. nigra under respective stresses of NaCl, KCl, CdCl2, and PEG. On the basis of RNA-Seq, we detected 247 DEGs that are shared by the four stresses in wild type poplar, and mRNA abundance of the DEGs were validated in transgenic poplar overexpressing ERF76 gene by RNA-Seq and RT-qPCR. Results from gene ontology analysis indicated that these genes are enriched in significant pathways, such as phenylpropanoid biosynthesis, phenylalanine metabolism, starch and sucrose metabolism, and plant hormone signal transduction. Ethylene response factor (ERF) gene family plays significant role in plant abiotic stress responses. We also investigated expression pattern of ERF gene family under the four stresses. The ERFs and DEGs share similar expression pattern across the four stresses. The transgenic poplar is superior to WT in morphologic, physiological and biochemical traits, which demonstrated the ERF76 gene plays a significant role in stress resistance. These studies will give a rise in understanding the stress response mechanisms in poplar.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 24 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 25%
Researcher 4 17%
Student > Doctoral Student 2 8%
Student > Bachelor 2 8%
Professor > Associate Professor 2 8%
Other 3 13%
Unknown 5 21%
Readers by discipline Count As %
Agricultural and Biological Sciences 14 58%
Biochemistry, Genetics and Molecular Biology 3 13%
Environmental Science 2 8%
Unknown 5 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 March 2017.
All research outputs
#14,928,316
of 22,961,203 outputs
Outputs from Frontiers in Plant Science
#9,348
of 20,389 outputs
Outputs of similar age
#186,917
of 310,289 outputs
Outputs of similar age from Frontiers in Plant Science
#259
of 509 outputs
Altmetric has tracked 22,961,203 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,389 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 310,289 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 509 others from the same source and published within six weeks on either side of this one. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.